On Z, graded Baker-Campbell-Hausdorff formulas and coset space
parametrizations

C. N. Parker and B. D. Winter
Department of Physics, University of Tasmania, Box 252C G. P. O. Hobart, Australia 7001

(Received 14 January 1983; accepted for publication 20 May 1983)

We present a generalization of the BCH formula, exp 4 exp I"=exp{d +I" + 1[4,1] + -},
involving n factors on the right, linear in 4 and to all orders in I". The result is applicable to coset
geometries involving Z, graded algebras and superalgebras. In the Z, case expressions are
obtained for group transformations in the spaces S " ~ ' = O(n)/O(n — 1), CP” = SU(n + 1)/U(n),

OSp(1/n)/Sp(n), and SU(n/1)/U(n).
PACS numbers: 02.20. + b, 02.40. + m

1. INTRODUCTION

Due to renewed interest in the interpretation of Ka-
luza-Klein theories' and their dimensional reduction, coset
spaces have again become a research subject.” When dealing
with such spaces, a convention-dependent particular para-
metrization of cosets is frequently required. Recently Del-
bourgo and Jarvis,* using a Wigner-type convention* for co-
set actions, derived a generalization of the famous Baker—
Campbell-Hausdorff (BCH) formula

expA expB=exp(d+ B+ 1i[4B] ).

Their generalization has two factors on the right, one con-
taining all brackets of odd order and the other having the
even ones. The new formula is applicable to all Z, graded
algebras (including superalgebras) and is valid for infinitesi-
mal 4 and finite B. In this paper we extend their result to the
case of n factors on the right, appropriate to Z,, graded alge-
bras and superalgebras (Sec. I1). The Z, result is applied to
several coset spaces in Sec. IIL

Il. DERIVATION OF THE Z, FORMULA

LetG=G,9G,®- &G, beareal Z, graded algebra.
If we denote by J; generators in the subspace G, then we have
the generic commutators

[Loddn ] =i,
o] =il j=1230n— 1, (1)
[']j"]k ] = lJ(j+ k)mod n*

An arbitrary group transformation may be expressed as the
product of a coset space action and a little group action,

{expliv,J,} expliys/y)-expliv, _J, () ]expliv.J,)- (2)
We seek to write the product of two coset actions in the

above form. As an initial step in this direction we take the
product of two coset actions to be

exp 4 exp I" = exp(i8,J,JexpliyJ,), 3)

where &, is infinitesimal. The problem now is to determine
the coeflicients a, such that

expd exp " =exp({" + dJ,) exp(d],}

X exp(dJ;)--exp(d], ), 4)
with
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a]iz Eajn+i—l[A’F]jn+i-]’ (5)
i=0
and where (4, ], stands for the n-fold commutator
(I[--[4,I")....I"), [4,]"], = 4. To first order in 4,
expl — I")(1 + 4 ) exp(l")
=exp( — ") exp(I" + dJ,)(1 + 3T, + - + /). (6)

Both left- and right-hand sides can be easily calculated using
the commutation relations

exp( —A)expld +04) =1+ 3 (04,4 1,/(n + 1,

n=0

expl—A)Bexpld) = 3 [BA ], /n!

n=0

The result is

1+ Sarl,p=1+3 ¥ a,lAl..., ,/p+1)
p=0 0

p=0a=

+ zaan+][A!F]an+l +"'
=0

+ Zaan+n;l[Asr]an+n—]' (7)
a=0
Comparing coefficients of the multiple commutators we ob-

tain the recursion relations

kR = i + 3 @y pulin + 1), (8a)

j=1

Vikn + el =@y, + S ag_u/in+c+ 1),  (8b)
. j=0

I<esn — 1,
where we have defined @ _; =0, ieZ *. Let the generating
functions for successive coeflicients be provided by
alx) = 3 a,,x", (9a)
k=0
b(x)= 3 Gy X" (9b)
k=0

Substituting for the a, from Eqgs. (8a) and (8b) gives

alx)=x 3 (x“"/(kn)) / St kn + 1)), (10a)
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0

bx)= Y (xkn+</tkn + c)l)
k=0

— afx) i ("t flhkn +c 4+ 1)), 1<e<n — 1.
k=0
(10b)

Taking the limit #— co results in the generating func-
tions

alx)=1, b.(x)=cx/(c+ 1)

Hence

expd expl =exp(l"+ 4 }exp(i[4,I"]) exp([4,]"],/3)--
explc[4,I]./(c + 1)l}--, (11)

which is just the Zassenhaus formula® for infinitesimal 4.
Setting n = 1 we have

a(x) = xe*/(e* — 1), (12)

in agreement with the Bagger and Wess® infinitesimal form
of the BCH formula. In the case n = 2,

expd exp I" = exp(l" + zazk (4,1 1)

ko= 0

Xexp(zb2k+1[A’r]2k4 l)' (13)
k=0
The generating functions for the coefficients are given by
a(x) = x coth(x), (14a)
b (x) = tanh(x/2), (14b)

reproducing the results of Delbourgo and Jarvis.* Itis this Z,
case to which we now turn our attention in the following
examples.

Il EXAMPLES OF THE 2, GRADING FORMULA
A.S" " =0(n/O(n — 1)

For this case we denote the generators of O(n) by T, for
a, B=1,2,..,n. The T’s are antisymmetric and obey the
commutation relation

[Tup:Tys ] = 480y Tps + 0ps Tty — 005 Ty — 6y Tos)-

(15)

The generators of O{n — 1} are relabeled as J,;, kj
= 1,2,...,n — | and the remaining ones are labeled as
K =T,.

With I" = /K~y and 4 = /K-b where the §, are infinitesi-
mal, it is a trivial task to evaluate the multiple commutators
to be

[A’r]z,u 1= _i(_yz}P(SkajVj»
(A7), =(— VY 6y —74), p>1

(16a)
(16b)

Inserting these expressions in the Z, grading formula (13)
and using (14) gives

expd exp
= exp{l" + &y (1 — y cot(y))/y” + cot(y)yd |
X expl — i8,J,;7; tan(y/2)/y), {17)

which is a trivial generalization of the O{4)/0(3) result given
by Delbourgo and Jarvis.*
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B. CP” = SU(n + 1)/U(n)

In this example we adopt the standard Gell-Mann nota-
tion and denote the Hermitian generators of SU(n + 1) by
F.,i=12,.,n+ 1) — 1. The maximal subalgebra U(n) is
assumed to be generated by F|,F,....F,. _and F,, - _ .
As we are dealing with a complex projective space, we com-
bine the coset generators of CP” into an n-dimensional
spinor, denoted by K. Similarly we form a spinor y from the
real coset parameters y;, j = n°,...,(n + 1)* — 2. This gives

I=iF,y, _+ A E Ve 2)

= (YK + Ky)/2, (18)

where

( Y — '7/" +1

\V{n + 3 T "%n PO R 1
( Fn" _IFn"-+|

K= ' . (19)

\En =3 T iﬁll Py -2
With the further definition

nt—1

JSUln + 1) = E E/Z‘l + (2(’7 + 1)/’2)1/21;"”" +2)1n7 (20)
T

where A, 1s the ith Gell-Mann matrix of SU(n) and I (n) is the
n X xn unit matrix, the SU(n + 1) algebra can be expressed in
the form

(4,1 ], = 6Ty — 7J8), (21a)
(4,7 ), = — YA + (75 + 6y /8

+ 3iy — 7O)Ky — 7K )/ 16, (21b)

[Ky — 7K.I" | = iy, {21¢)

(7.l 1 =iy’ (Ky — 7K), (21d)

where y* = yy. (21e)

The multiple commutators are given by
(4,71, .\ = u,y™ 8Ty — 7J8) + v,y 6y — ¥8)7Jy,
(22a)
(A7), =x,y74 +y* *(w,(¥5 + y)lC
+ iz, (6y — V) Ky — ¥K)), p>1. (22b)
The various coefficients may be evaluated using recurrence
relations, with the outcome

X, =(—=)h = —( —%)er]’ w, = —3( =)
z,= —v,=(—HT'@-1. (23)

Using these expressions in (13) gives the concise formula
expdexpl” B

=exp{/l + pad cot(y/2) + L[(¥d + 6y} (2 — y cot(y/2))

+ 175 — 8y)Ky — 7K )l cotly) — Ly cotly/2) ] /]

X expl i¥d — 8y)7J¥(2 tan(y/4) — tan(y/2))

+ 18Ty — 7JS)tan(y/4)/y]. (24)
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Computationally speaking, the calculations proved to
be simpler if the matrix form of the SU{n + 1) generators was
used in preference to the Gell-Mann form. The alternative
generators (T ,5) obey the commutation relation

[ Taﬁ’T;'5 ] = 67’[}‘ 7:15 - 5(16 T)'/j" (25)

wherea, 3, ¥, 6 = 1, 2,....,n + 1, and they satisfy

(T.p) =Tg,and 2! T, = — T, ,,. . Those T’s that
generate U(n) are denoted by J, J;, = T, i,/ =1, 2,..,n,
while the coset generators are denoted by L:

L.:

!

T, .., L., ,=T,,,, Because of the hermiticity

property, the coset parameters are now complex and satisfy
n¥=m,, , sothat
I'=iLq + Ly + -+ L,7,
+ LIt +Lint + -+ Lon¥)
= /L. (26)
The details of the calculation using this notation and the

conversion to the previous notation are presented in the Ap-
pendix. The result is given by

expd exp " = exp[ I+ 4 + 3i((n, A6, )81, %% + n,m¥)2x cot(2x) — 1)
+ (1 AO)x* — (m, NG, ), )x cotix) — 1)x L, — nFL,)]
Xexp[%x”((nh N 6,)1,m¥(2 tan(x/2) — tan(x))
— 2x*m; NG, tan(x/2)J; — 8, T, . 1.4 1)]> (27)

where, to avoid confusion, we use I" = iL-n, 4 = i{L+0 in the
calculation using the alternate notation. The quantity
(6, Am,) is given by
(‘91 /\771')5(61*77.' - 77/*9:') = — (77;‘ NG,), (28)
while
x*=nry, =il (29)
The indices 4 to / run from 1 to » with summation over
repeated indices.

C. OSp(1/n)/Sp(n)
The generators of OSp(1/n) satisfy the commutation re-
lation’
[ T Tep ] =gpcTap — [AB 184 Tsp
— [CD 1gppTuc + [AB1[CD 1g,p Tics

(30)
where
T,s = — [4AB Ty, (31a)
and the sign factor [4B ] is defined by
(4B ] =(—1)""&), (31b)
O0for A=1
A)= ’ 31
1) {1 for 2<<A<n + 1. (31¢)
With the identification
Ka = Tla = - 71:11!
ab=23,..n+ 1, (32)
Jab = Tab = Jba’

we obtain the result
exp 4 exp I' = exp[(1 + 61/ 7y + ()"
X cot(7y)'*A — (8y)(Fy) ™ 2cot(py)' I ]
Xexp[ — tan(i(7y)'*)6°Y" Ty /(77)"* ], (33)
where
A=iK, &8, I'=iK,y", 7v=vV8u,7" (34)
Note that since ¥ is an a-number, 7¥ is a nilpotent c-number
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I

and the power series [e.g., cot(yy)''°] terminate after a finite
number of terms. The final series expansions of course in-
volve only integral powers of 7y.

i/2

D. SU(n/1)/SU(n) x U(1)

For the last example of the Z, grading formula we take
the superalgebra analog of SU(n + 1)/U(n). Again we adopt
the Gell-Mann notation with Hermitian generators F,,
i=1,2,...,(n + 1) — 1. The a-number-valued generators
F,.,...,F, .\ _, are combined into an n-component spinor
K and the (imaginary) coset parameters are used to form a
spinor y in the same way that they were in the example of

Sec. IIIB [see (19)]. By defining

I'=iF, .y, + - +F(n+ W —2Vm+ 17 - )
we ensure that
= iKy+7K)/2. (18)

The analog of the matrix operator J is given by

nt—1

Isummy = — Y, AF — (2(n — 1)/n)' *F,,  ,1,, (35)

i=1
where 4, is again the ith Gell-Mann matrix for SU(n). The
algebra SU(n/1) may be summarized by Egs. (21) and the
multiple commutators are exactly those given in Egs. (22)
and (23). Because of this, the expression for the product of
two coset transformations is given in Eq. (24).

In example ITIB it was stated that the calculations were
easier to perform if instead of the Gell-Mann generators, the
matrix generators were used. The same comments apply in
this case where the T, satisfy’

ay
[TapsTy5] =8,5Tas — [ 35]5,,6 T (36)

here the Greek indices run from 1 to n + 1 and
ay]
= { — 1)@+ 0B +6)
== : (37)

with
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(@) = [O for 1<axgn,
"1 fora=n+1.
They also obey the constraints

(38)

n+41
(Tp)'=Tp and Y T, =0.

a=1

The generators of SU(n) X U(1) are identified as J; = T,
where i, j = 1,2,...,n. The coset generators are given by
L,=T,,,andL, , =T, and are a-number valued.
The coset parameters are complex g-numbers and are such
that ¥ = — . Then the calculations are simple and

yield the result

exp A exp I' = exp{4 + I' + Lix "*[(1 — 2x cot(2x))(n, A 6,)(x?8,, + n,1¥)
+ 4(x cotx) — 1)(x*(n, A6,) — (7, A6, mEn) (L, + ¥L Z)}
X exp{%x”[(n,, A6, )mm¥(2 tan(x/2) — tan(x)) + 2x*(n; A 6,)tan(x/2)]

X(‘]q +5ian+l,n+l)}‘

AgainI" = iL-y, 4 = iL-0, and (6, A 7,) and x° are defined in
(28) and (29), respectively. The indices 4 to / run from 1 to n
with summation over repeated indices. Relevant details of
the calculation using the matrix generators and the conver-
sion between the two forms of the answer are given in the
Appendix. Note that for SU(n/1)/SU(n) X U(1), both x* and
y* are nilpotent c-numbers.

The examples of $?, S 3, CP?, and OSp(1/4)/Sp(4) have
already been performed by Delbourgo and Jarvis® and pro-
vide a useful check of our results. In each case the agreement
is perfect.

In the general case it must be realized that the left-hand
side of (3) does not involve the most general coset actions.
Using the case of a Z, graded algebra, for example, we would
have

exp(i6,J,) explidoJ,) expliy,J,) expliyJs)
as the most general product of two coset actions. This prob-
lem has not, as yet, been fully solved and we are obliged to
leave it for future study.
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APPENDIX

As has been stated in the text, it is considerably easier to
do the SU(n + 1)/U(n) and SU(n/1)/SU(n) X U(1) calcula-
tions using the matrix generators rather than the Gell-Mann
ones. The purpose of this Appendix is to repeat the above
examples, this time treating them in the same way as O(n)/

(A Loy = (— 17" (@47 = Dl A Gy ) x> =2+ (1, NG Wy — 85Tk v 1)

(39)

O(n — 1). Relevant details of the conversion between the ex-
pressions given in (27) and (39) with that in (24) are also pre-
sented.

1. SU(n + 1)/U(n)
Recall that the matrix generators satisfy
[TaB’Ty(ﬁ] =6yBTa6 _5a6TyB’ (Al)

fora,B,7,6 = 1,2,..,n + 1. The T"’s are split into two group-
ings: J; = T;, where ij = 1,2,...,n,and L, =T, , ,,

L,,,=T,,,; The Hermiticity property of the T"’s,
(Taﬂﬁ = TBa’ (Az)
means that the coset parameters %,,...,77,, are complex with
NE =iy (A3)
so that

I =iLm =Ly + Ly, + -
+L,n, +Lint+~+L,LY)
With this notation, the SU(n + 1) algebra can be expressed
as

(A7, =0, A9y —8,;Ts s 1ns1)s (Ada)

[J; =8, Ty 1ny 1l ] = il6i8y + 8;8u)m Ly — n¥L L),
(Adb)

[77kL1 — L I,F]
= l.(7]i7775kj + N« 77;*5[1 Wy — —5.7 T, i) (Adc)

where T, ,,,, = — 2}, T, and (6, An,) is given in (28).
The multiple commutators are trivially found to be [with x?
given in (29)]

(A7 Yo = i — 1) [ A6) + 47 1y N6,)E, ] X*" 7

+ @ = N A8t YLy — ML), m>1,

and these expressions yield (27).
The task of converting (27) into (24) is quite easy if one
realizes that (for i = 1,2,...,n.)

29, =y, (Aba)
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(AS5a)
(A5b)

|
200 =7 (A6b)
L =K, (ATa)
L,.,,=K, (AT7b)
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where, for example, 7, denotes the ith component of the
spinor ; see (19). The following equalities are then estab-
lished:

4x* = y?, (A8)
4y, \6,) = (76 — 8), (A9)
40, Ay — 5.’] T, 1ni1)= SJSU(n w0 — Wsun + 115’
(A10)
Ay — 8,1, iwi ) =WV, (All)
2Ly —EL}) = (Ky — 7K), (A12)

16i(n, A6, L, — n¥L}) =4y*A — 276 +_5‘7/)F
— il6y — 7O)Ky — ¥K),

(A13)
$urnn L, — rL]) =y Ky — 7K), (A14)
where
I =iLm = YKy + 7K ), (A15)
4 = iL8 = 4i(K6 + 8K ). (A16)

The reader may verify that insertion of (A8)-(A 16} in (27)
gives (24).

2. SU(n/1)/SU(n) x U(1)

In this example, the matrix generators T, satisfy

ay
(T Tys) =80Tt — |y B Too

where a, 8,7, 86 = 1,2,...,n + 1, and [3}] is defined in (37).
AgainwehaveJ, =T, L,=T,, . ,,andL, , =T,
whereij = 1,2,...,n; however, the L ’s are now a-number gen-
erators. Equation (A2) holds but because the coset param-

eters are g-numbers, they obey

(A17)

== Niia (A18)
Defining I" = L+ ensures that (A15) is still true. The
SU(n/1) algebra is given by

(4.7 ] = =6, A9)y + 6, T 1 1) (A19a)
[y + 6,1, 1nyiid]
= — i(ajkéﬂ - 5ij6kl)(77kLl +fL Z)’ (A19b)
[7:L; +7nFL I,F] = — {6y nnt + Summf)
XWy + 84T tns1) (A19¢)

AgainT,  ,,,, = —Z2/_,J, and (6, An,)is given in (28).
The multiple commutators are readily evaluated;
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(A7 Ly = (= 1) {47 = 1)(m, AB, it~ 2
— [ /\ei)xzmu‘]ij + 5:}'Tn+ Lntih {A20a)
(A, ]y =i — )" { [(mx NE) — 47 iUA Aeh)‘skl]xzm_z
+ (@77 = 1), A6, T Y
XLy +mFLy), m>1, (A20b)

with x? defined in {29). Inserting these expressions into (13)
leads directly to (39).
The analog of {A6b) is

it = =V (A6b’)
with the () sign occurring because the elements of the spinor
y are purely imaginary. Equations (A6a) and (A7) remain

unaltered, as do (A8), (A9), (A15), and (A 16), while (A10)-
(A14) become®

- 4(91 Ay + 5:an Flae1) = S-,suu./n?’ — Psuinn)6s

(A10')
— i, + 6,1, i) =1, (A11)
2m Ly + L) = (7K — Kv), (A12))

16i(ni A6, L, + 7FL L) = 4°4 — 28y + 7O
— {5y-v5)(Ky — 7K ), (A13)
8uxm L, + m¥L]) = y*(Ky — 7K ). (A14)
If these expressions are inserted in (39), one obtains (24).
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A duality consistent phase convention for complex conjugation in SUn

John J. Suilivan

Department of Physics, University of New Orleans, New Orleans, Louisiana 70148
(Received 19 April 1983; accepted for publication 24 June 1983)

We have argued that a simple phase convention for all involutive mappings can be chosen so the
algebra of inner product couplings in SU# is identical to that for outer products in S, . Pure real
phases with a single + 1 entry in any row or column can represent the permutation matrix for
transposition in order of the two component irreducible representations (irreps) in a binary
coupling, the matrix for association in S, with respect to the alternating group 4, , the Derome—
Sharp matrix, and the 1m factor. The latter two are required by complex conjugation in SUn. In
our previous work, we have proposed specific prescriptions for assigning the phase under
transposition and association and have shown them to be consistent with duality. In this work, we
propose a duality consistent prescription for assigning the phase of the Derome-Sharp matrix and
thus of the 1jm factor which is related to it by association.

PACS numbers: 02.20. 4+ b, 03.65.Fd, 11.30.Jw

I. PHASE AND DUALITY

In our previous work (I),' we have considered the sym-
metry properties required of phase conventions for the cou-
pling algebra of the unitary unimodular group SUx to be
consistent through duality with coupling in the symmetric
group S, . For a more explicit description of the notation and
terminology, and citation of past works on this subject the
reader is referred to I. Our work has concentrated on the
duality of outer product coupling in S, /S L with inner pro-
duct coupling in SU#n, although an analogous duality holds
for inner product coupling in.S; and outer product coupling
in SUnm/SUnSUm.? Phase conventions must be prescribed
for transposition in the order of the component irreps in a
binary coupling (4:4,4,)«>(4:4,4,), association in S, with
respect to the alternating group 4, (1:4,4,), complex conju-
gation in SUn requiring the Derome—Sharp factor? ([/ "/ ]:
[17/4,] [15/4,]), and complex conjugation in a basis
adapted to SUn/SUn,SUn, requiring the 1jm factor
((27/A 1:{1"/A,1 [1"/A,]), where n = n, 4 n,. These con-
ventions are all interrelated by duality. In I, the symmetries
these phase conventions must exhibit to be consistent with
duality are specified and a detailed examination of the role of
multiplicity in outer product coupling in S, is made. We
have argued that a set of phase conventions consistent with
duality can be chosen so each of the above factors is in real
pure phase form (a single + 1 in any row or column of a
phase matrix with rows and columns labeled by the multi-
plicities). These pure phase conventions remain consistent,
although modified, upon introducing symmetrized products
appropriate to S,, /S, wreath S,. In addition, we have pro-
posed specific conventions assigning the phase sign under
transposition and under association, and have shown them
to satisfy all the requirements of duality. The conventions for
the Derome-Sharp factor and the 1jm factor have been
shown to be related by association. Although the Derome—
Sharp factor can almost always be chosen to be the trivial
positive unit ( + 1) factor, we have shown there are some
couplings in which this factor must be negative in order to
maintain reality of the coupling coeflicients as implied by
choosing real matrix representations of S, . However, we of-
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fered no convention for fixing the Derome-Sharp factor
and/or the 1jm factor, considering this an unresolved ques-
tion.

In this work we propose a prescription for fixing the
Derome-Sharp factor almost always as the trivial positive
unit, but in most cases where symmetric and antisymmetric
products of S,; /S, wr S, separate multiplicities, we must
choose a negative sign for the antisymmetrized coupling.
This sign is required for the same reason it comes about in
bringing the transposition phase to diagonal form. Fixing
the Derome-Sharp factor fixes the 1jm factor by association.
Indeed, when the Derome-Sharp factor is the trivial positive
unit, the 1jm factor is the association sign for the double
coset matrix element specifying the 1jm factor. We carry out
this prescription for the 1jm factor in the Gel’fand scheme
SUn/SUn — 1 and show it reduces to the usual convention
for SU2.

II. DOUBLE COSET FORMS

The Derome-Sharp factor is a phase matrix which must
be considered when relating the coupling coefficient for a
triad to that for the complex conjugate triad in a given group.
It can be related to a particular 9j recoupling coefficient in-
volving three scalar entries. For SUn as shown in I, it can be
identified with the double coset matrix element (DCME):

(A1), (Aa), )

@y,

W+Lr (5]  [3)
Pl A, i, |r

] B ED

In this paper, we will consider the Derome—Sharp factor as
identical to the DCME, ignoring the magnitude factor since
it is only the multiplicity resolution (rr*) and the sign which
concern us here. Using the transposition phase proposedin I,
we have the following equalities:

A(nAA liz)rr*z(

X (2.1)
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A (nAA A )rr* = A (nAAA,)ss*
=A(nA ¥ A A 5)r*r
= A (1A *A 24 F)s*s. (2.2)

That is, the operations of transposition and complex conju-
gation commute and the Derome-Sharp factor does not
change sign under either of these operations. It is also imma-
terial if one considers the triad in the vector coupling form
(A:A4 ,A,)r or the more symmetric 3j form ([/"]:A,4,45)r,
where A =[1"/4,] because 4 (nA:A,A,)rr* = A([1"]

A A A )rr*.

The 1jm factor is a phase matrix which must be consid-
ered when coupling an irrep in a basis adapted to a specific
subgroup sequence with its complex conjugate irrep to form
a scalar. It has the form of an isoscalar factor. For a basis
adapted to SUn, + n,/SUn,SUn, as shown in I, it can be
identified with a weighted double coset matrix element
(WDCME):

((ny + nAin A nods)
_( A, 4 my )”2
T\ Ay, (A2
/7]
A A A
I}

uesir] 1] [£]] -

({4 + L)) (/5]

i e E s (D [iz] e

where 7 = 7*. The six factors on the lhs are association
phases which may be evaluated according to the prescription
given in I (Eq. 7.5). Thus fixing a phase convention for either
the Derome—Sharp factor or the 1jm factor fixes the conven-
tion for the other. In I it was noted that the Derome-Sharp
factor usually can be chosen as the trivial positive unit phase,
but there are exceptions when duality requires the negative
assignment. The first negative example given is 4 (3[3,2,1]:
[2,1]18[1?]) = — 1. Here we will argue that the Derome-—
Sharp factor in unsymmetrized products can always be cho-
senas + 1,and in symmetrized products it may be chosen as
+ 1 except in those cases where (1A A,)=~([(/, + L,)"/A ]:
[{7/A:]1[15/2,])) A1==A, and use of the symmetrized and
antisymmetrized products separate the multiplicity in which
case it must be chosen as 4 (nAA, ® 0) = ¢, where ¢,

= + 1as o = [2] or [17]. The 1jm factor sign is fixed by
association and is consistent with duality and the Schur clas-
sification of irreps.

lil. THE DEROME-SHARP FACTOR PHASE

In I we characterized a triad coupling by a set of posi-
tive integers m,(k ) specifying the number of nodes trans-
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(A I VA0 N VA
A A, A, r
= E] (E)
7
A A, A,
Analogously, we will consider the 1jm factor as identical to
the WDCME and, equivalently, to the DCME of the same
form, ignoring the magnitude factors since it is the multiplic-

ity resolution (F7) and the sign which concern us here. Trans-
position of the rows gives

((ny + moMen A oA )rr

=3 ( — 1)L|"2+Lz"1

X((nl+n2)[ll"+“] [l] ) (2.4)

as required by consideration of Schur’s mvar1ant in

SUn, + n,/SUn SUn,. An analogous relation by transposi-
tion of the columns can be given but it adds nothing to the
development here.

In I it was noted that the form of the Derome-Sharp
factor is associate to that of the 1jm factor, so these phase
matrices are related by the duality operation of association in
S, .

X (2.3)

(n"*t]  [n"]

!

~

A

—
ferred from row / of component irrep A, to the jth row of the
composite irrep built on A, . in the ith step of carrying out the
Littlewood Richardson rules for outer products in S, /S, .
Thus we have the transcription '

Wl Ao)r=([£}:[1(1), T[T (2): ])r

= ([Zm(l)q + ;m(Z)hi]:[Zm(l)U [Zm(Z),-j )
< . _
! ST
Prescriptions were given for determining the sign of the
transposition phase and the association phase from the set
{m,(k)}. It was also noted that there was a natural mapping
under complex conjugation giving

m(k ')3‘ =m(k )m 4 nmeitn T 5q(l(k D=L i) (32)

Here we correct an error in the delta factor of Eq. (7.13) of I
which does not affect the arguments of that paper. Relation
(3.2) specifies the multiplicity mapping under complex con-
jugation and transposition. For A,~A,, the transposition
phase matrix is real and symmetric. The phase prescription
for transposition proposed in I results in a real phase form
which is a sign independent of the multiplicity times a per-
mutation matrix which can be ordered to have either the unit
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or two by two block matrix ( ;) along the diagonal. The
transposition phase matrix is diagonalized in the multiplic-
ity by transforming to symmetrized products. Let
ro)=|A:4, ® [0]], then character theory of S, requires the
character of the class (2"} in Ar2L to be

[412%) = 3 |4,](n2) — A17). (3:3)

AL,
Thus the transposition phase matrix in its nondiagonal but
real phase form has |1{2) — #{1%)| units on the diagonal, and
minimum (r{o}) two by two {J 1) blocks on the rest of the
diagonal.

For

o T )

the Derome-Sharp factor also has a symmetric real phase
form. If, in addition, A,~A,, then the mapping Eq. (3.2) also
is represented by a real symmetric phase matrix. Since both
of these matrices commute with the transpose phase matrix,
they must both have a block diagonal form similar to that
discussed above. The number of two by two blocks may be
different, but the reduction is such that one has submatrix

multiplication
(0 1)(0 1) (1 O) (0 1)(1 0) (O 1)
10/A\10/ \o1 10/\0 1/ \10/
That is, in the natural permutation representation of the
symmetric group on the multiplicity space S,,, , 3, these
phase matrices belong to commuting elements of the two
fold classes (112 + 7% = 2°12p),

As pointed out in I, the only case in which there might
be an inconsistency between duality and assuming real phase
form is when, in addition, one has triad equivalence under
association, i.e., (A:4,4,)~(4:1 4,). The simultaneous appli-
cation of all three triad equivalences restricts the form of the
irreps to two types which are given in Table 6.1 of I. For
these types, we show, in the Appendix, that the relation Eq.
(3.2) is the identity mapping and thus the Derome—Sharp
factor must be identified except for overall sign with the
tranposition matrix. Diagonalizing the transposition phase
matrix by transforming to symmetrized products requires
the negative assignment to the corresponding Derome-—
Sharp factor phase for each two by two block (§ §}—(5 %, ).
For example, the characteristic triads for the two types are

@ ([3,2,11:[2,1]3
= (0 1) = A(3[3,2,1]:[2,1]2)—+((1) B (1))

10
with
23,212,118 [17)) = — 1 = 4(3[3,2,1}[2,1] & [1’])
and
10y 2 421, 2
0 1) "”A(4[4 )22]‘[372’1] )

which remains invariant under transformation to symme-

trized products {i.e., 72} = 2 and {1?) = 0]. If the associate
triads are not equivalent, there is no question that real phase
form is consistent with duality, but the matrix representing

@ (14.221:032.11) =

2544 J. Math. Phys., Vol. 24, No. 11, November 1983

Eq. (3.2) is no longer the identity. The multiplicity labeling
for each triad

IPHE ([ 2141, H l(;])? ])

can be used to determine the form of the matrix representing
Eq. (3.2), while character theory establishes the form of the
transpose phase matrix. The product of these two matrices
gives the Derome—Sharp matrix. The transformation of each
two by two block (§ 4 ) of the Derome-Sharp matrix to diag-
onal form using symmetrized products requires negative as-
signments for those 4 (1:4, ® [1%]). However, those portions
of the Derome-Sharp factor which were already diagonal
but correspond to a (§ ) block in the transposition phase
remain diagonal on transformation to symmetrized pro-
ducts with positive phase assigned to both components. For
example [[6,5,3,2] [4,3,1)°] = 5 with 2} = 2 and 7{1%) = 3,
the (/) sets m; labeling the unsymmetrized multiplicities
are

My =My = Myy =My, =my, = |,

mp=my=my =1, my=2
mpy=m =my =1,
mp=my=1 my =2,

myy=2 my=my=1,
for which Eq. (3.2) has representation matrix
1 0 0 0 O
01 0 0 O
0 01 0 0}
0 0 0 0 1
0 0 0 1 0
The transpose matrix must have the nondiagonal form
1 0 0 0 O

0 01 0 O
®([6,5,3,2]:[4,3,1]1= —-]0 1 0 0 O
0 0 0 0 1
0 0 0 1t O
Thus
1 0 0 0 ¢
0O 01 0 O
A(4[6,5,3,2]:[4,3,1})) =0 1 0 0 O}
0 0 01 0
0 0 0 0 1
which transforms, using symmetrized products, to
1 0 0 0 0
0 1 0 0 O
A([6,5,3,2]:[4,3,1]®0)=]J0 O —1 0 O}
0 0 0 1 0
0 0 0 0 1

In summary, a phase convention consistent with duality may
choose the Derome-Sharp factor as the trivial (positive) unit
except for symmetrized products of the form (1:4, ® [17]).
Even in these latter cases, a negative assignment need be
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made only when it results from diagonalizing the two by two
block (0 §) in the nondiagonal real phase form of the Der-
ome-Sharp matrix. The occurrence of the nondiagonal two
by two blocks is determined by the forms of the matrix repre-
senting Eq. {3.2) and the matrix representing the transpose
phase matrix as fixed by character theory in S; .

IV. THE /m FACTOR

Establishing a convention for the Derome-Sharp ma-

(7] [7"=1 [/]
(4] [l —m;] [Zm,]
[l“ln—i+l] [l_ln—i+mn—i] [2(,_: —

where 1<i<n — 1 and /, =/ and /, = 0. For this subgroup
adaption, the 1jm factor simplifies to

(nzlz(n—1)[1,-—m,-])=(—‘1)zm,,>2,-+,. (4.1)

That is, for SU2 the 1jm phase is ( — 1)™. Usingj =1/2,
m=1/2 —m,gives( — 1)™ = ( — 1y ~ ™ as usual. For SU,/
SU, the 1jm phase factor is ( — 1)™, for SU,/SU, the 1jm
phase factor is ( — 1)+ ™, etc.

APPENDIX

For A,~A, and (1:4 })=([(2! /A }:[1 /A, P)~(A:A 3),
we wish to show the mapping Eq. (3.2).

My=mM oy —ivy T80 =1, i)

is the identity. The set of triad equivalences are satisfied only
for triads of the form [I, Eq. (6.18) and Table 6.1]
([3b),26),6°1:[(26)°,6°17)
or
(45 )26 °1:[(3b),(26)%,b " 1?)

for which [ = 2b, n = 3b; or I = 3b, n = 4b, respectively.
Consideration of the Littlewood-Richardson rules for outer
products in S; shows the coupling can be represented sche-
matically in terms of [5°] blocks as

€
x 46 or x x 1 2

€ bb/

m
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ln—i+1

trix fixes the 1jm factor by the association relation (2.5)
which follows from duality. The association phases may be
evaluated by the convention given in Eq. (7.5) of I. This,
together with the mapping (3.2), allows the 1jm factor to be
calculated in a straightforward but tedious manner. In the
general case, we have been unable to find any algorithm sim-
plifying the 1jm phase calculation.

For the Gel’fand and canonical basis SUn/SUn — 1 the
1jm factor has the association sign of the DCME

_‘m,,,,')]

where the multiplicity is in one to one correspondence with
all irreps € such that |[6° ]:€[b?/€]| = 1. The explicit cor-
respondence is, with 1<k, k'<b,

My =06,.b or

=My =Mpp k0 = Mop g k364 ks

My, =Ouw € OF

=Myp ks

My sk =€_x —€—r 1 (k2k') or
=Mysp 4k

My kbsk =€k — € ki1 (K'2k) or

=My k2b+ ks
My, xabsk =Okk € _gxy1 OF

=My k364 ks

respectively.

Use of (3.2) shows it to be the identity map for either
type of triad. That is, for these types of triads, the mapping of
multiplicities under complex conjugation is identical to the
mapping under transposition of the component irreps.

'J. J. Sullivan, J. Math. Phys. 24, 424 (1983).
*J. Quan Chen, J. Math. Phys. 22, 1 (1981).
*J. R. Derome and W. T. Sharp, J. Math. Phys. 6, 1584 (1965).
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A Racah basis is introduced for the generators of these matrix superalgebras and explicit formulas
are derived for eigenvalues of Casimir operators in terms of the components of the highest weight.
The result contains, as special cases, the corresponding expressions for the general linear,

orthogonal, and symplectic Lie algebras.
PACS numbers: 02.20.Sv, 11.30.Pb

I. INTRODUCTION

Casimir operators for the classical Lie algebras have
been studied by many authors. In particular, for representa-
tions possessing a highest-weight vector, eigenvalues of the
Casimir operators have been calculated in terms of the com-
ponents of the highest weight. The pioneering work along
these lines was done by Perelomov and Popov,' by Louck
and Biedenharn,” and by Okubo.* Particularly simple ex-
pressions, showing the similarity between the various classi-
cal Lie algebras, were obtained by Nwachuku and Rashid.*

The purpose of the present work is to extend the above
results to the general linear and orthosymplectic Lie superal-
gebras. These are matrix algebras, just like the classical Lie
algebras, and therefore a matrix notation can be convenient-
ly used to label the generators. This basis for the generators
will be called the Racah basis since it is a natural generaliza-
tion of the basis proposed by Racah for the classical Lie
algebras.” The detailed description of the Racah basis for the
general linear and orthosymplectic Lie superalgebras 1s giv-
en in Sec. 11, together with a definition of tensor operators
and construction of invariants.

In Sec. 111, the eigenvalue C, of the jth degree Casimir
operator is expressed in terms of the jth power of the Perelo-
mov-Popov matrix. Up to this point, the various Lie super-
algebras are treated simultaneously. It remains to diagona-
lize the Perelomov-Popov matrix. In Sec. IV, this is done in
detail for the orthosymplectic superalgebras osp{2m + 1/
2n);in Sec. V, for the orthosymplectic superalgebra osp(2m/
2n); and in Sec. VI, for the general linear superalgebra u(m/
n).

The final result is remarkably simple, namely,

(=)

k #0,a.a

¢, = S [alll.)s,

1 for u(m/n)

S, = fa] — ()
1 + (1 600) la — lu

The notation is explained more fully in what follows; here we
just want to mention that [a] refers to the grading and /, is
the diagonal element of the Perelomov-Popov matrix and is
given by a linear function of the ath component of the high-
est weight.

Some partial results on the subject of Casimir operators
for superalgebras have been obtained previously. Bednar

for osp(p/2n)
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and Sachi® consider osp(1/2m) only, for which they give
explicit formulas for the quadratic and quartic Casimir oper-
ators in terms of the generators, and outline a procedure for
the operators of higher degree; they do not discuss the eigen-
values. Jarvis and Green®® consider the same superalgebras
as we do (as well as the special linear superalgebra) and con-
struct Casimir operators of arbitrary degree by means of ten-
sor operators just as we do. They give explicit formulas for
the eigenvalues in terms of highest weights in an arbitrary
irreducible representation for the linear and quadratic Casi-
mir operators of u(n/m) and osp(n/2m). Our results are in
exact agreement for these cases. Balantekin and Bars® and
Balantekin® concentrate on the special linear superalgebra
which we omit.

Most recently, while this work was being completed, a
preprint appeared of a paper by Scheunert.” Our final formu-
las for the eigenvalues are identical. Scheunert’s approach is
more abstract using elegant mathematical language while
our approach uses language common among physicists. In
particular, we give a detailed description of the Racah basis
for the generators and the diagonalization of the Perelomov—
Popov matrix; while these topics are implicit in Scheunert's
work, very few details are given.

Il. THE RACAH BASIS AND TENSOR OPERATORS

The generators of the orthosymplectic Lie superalgebra
0sp(2m + 1/2n) are denoted in the Racah basis’ by G ¢ with
the indices ranging from — (m + n)to + (m + n), zero in-
cluded. They obey the supercommutation relations
[G:, Gyl

— 62 Gz _ ( - )(Un + e + ng) 52 ;}
—-656"( _ )"Iu”lh [5; GE . ( _ )(Va+7lb)l77'+nd)5;[; G;: ] ,
2.1)

where the supercommutator [ , | denotes
(G5, Gil =Gy Ga— (=)™ """ "G, G 22)

and

l

a

—a. (2.3)
The 7, define the grading:

0 for —m<a< +m,
N, = { (2.4

1 for m+ 1<|al<m + n,

and
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for — m<a<m,
o {1 or —m<a<m 2.5)
sgna for m 4 1<lal<m +n.

Lastly these generators are antisymmetric in the sense

Gi=—ée(—)""GL. (2.6)
Note that

=41, ed=(—)" 2.7)

The generators G ¢ are called evenif (— )™ """ = 4 1,
and odd if (— )™ " ™= — 1. It follows that the supercom-

mutator of two odd generators is an anticommutator, all
other supercommutators are commutators. The even gener-
ators generate a subalgebra which is readily recognized to be
o(2m + 1} Xsp(2n).

Next we define tensor operators 7§ by the supercom-
mutation relations

(G5, T4

= 8T — ( _ )lﬂu + )7, + Na) (ng;

—UYs L d

_ Efzeb( . )Uum, [6§T‘51 o ( _ )(775+’7bil77r+7141 5:[;7";] ,
(2.8)

where the supercommutator [ , } denotes

(G5 Ta} =GyTG — ()" " ™" "™ T Gi. (29)
It then immediately follows from Eq. (2.8) that

623 72| -0

ie., 2, T<isan invariant. Moreover, one proves just as easi-
ly that if U and V are tensors then so is UV, where

(2.10)

UV, =3 Ut Vilel, (2.11)
and we introduce the convenient abbreviation
@) =(—)"™ (2.12)

Clearly the generators themselves are a tensor and so is
the jth power of the generators defined by

(G = 3 (G Gylel, j>1, (2.13)
with C
(GO =861 (2.14)
Finally, therefore,
(2.15)

3 (G
<

are invariants and will be referred to as jth degree Casimir
operators. Because the generators are antisymmetric, the
linear Casimir operator vanishes and all odd-degree Casimir
operators can be expressed in terms of those of even degree.

It is clear that all of the concepts described above con-
tinue to be valid if all indices are restricted to range from
— (m + n)to + (m + n), zero excluded. This corresponds
to the orthosymplectic superalgebra osp(2m/2n) with the
even subalgebra being o(2m) X sp(2n).

Similarly, if the indices are restricted to range over posi-
tive values only, one obtains the general linear superalgebra
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u(m/n) with the even subalgebra being u(m) X u(n). Of
course, the antisymmetry condition Eq. (2.6} no longer ap-
plies and independent odd-degree Casimir operators exist.
The Kronecker symbols in the second line of Egs. (2.1) and
(2.8) now necessarily vanish, resulting in much simpler su-
percommutation relations.

lll. THE PERELOMOV-POPOV MATRIX

The generators of the Cartan subalgebra are given in the
Racah basis by G2, 1<a<m + n (note that GZ = — G % in
the orthosymplectic case), and state vectors in the represen-
tation space may be taken as simultaneous eigenvectors of all

the G¢:

Gilw) =w,|w), (3.1)

(3.2)

where w is called the weight. We consider representations for
which G2 = G ¢ so that the w, are real. An ordering of the
weights may be introduced. We shall call w’ higher than w if
the first nonvanishing component of w' — w, starting from
the left, is positive. It follows from Eq. (2.8) that

w:(wm+,,,w,,.,+n‘1,...,w2,w1), W; = — W

as

Tgw) = |W), B, —w, =8 — 85 +61—8, (3.3)
which leads to the classification
raising c>d
T5 is a {weight tensor operator if {c=4d
lowering c<d
(3.4)

From now we consider representations possessing a
unique highest-weight vector |h), i.e.,

TZ“'I) =5Z ta|h>y a>b9 (35)
where ¢, denotes the eigenvalue of 72, In particular,
Gilhy =8; h,|h), a>b. (3.6)

Consider now the tensor GT, and let f, denote the eigenvalue
of (GT');. We have, therefore, when applied to |h),

a

fi= S5 1631
b= bpn
a—1
=[alGoTo+ 3 [61[G5, TS}
b=b_,
a—1
= [a] ha ta + z {[b ] [a - [a] tb +5i(tﬁ _ta)}
b= by,
a—1
=l t,+p, t; —[a] Y 4, (3.7)
b= Bpin
where
a—1
Pe= 3 &, (3.8)
b=D,,
a-—1
l,=[alh, —p, + 5 [b], (3.9)

b=b,

with &, equal to 1 for the general linear, and to — (m + n)
for the orthosymplectic superalgebra.

Equation (3.7) may be rewritten in obvious matrix nota-
tion as
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f=4t, (3.10)
where A is the Perelomov-Popov matrix given by
Agp =1, 6oy +Pa 83y — a] 6,,, (3.11)
with
1 for a>b,
Ous = [0 for a<b. (3.12)

Note that A is a triangular N X N matrix, with N the dimen-
sion of the defining representation of the relevant superalge-
bra, i.e., N =m +  for uim/n) and N = p + 2n for osp( p/
2n).

Equation (3.10) gives the eigenvalues of (G7'); in terms
of the eigenvalues of T%; by repeated iteration we obtain

(G = Zb:(A Nas 161, (3.13)
so that the eigenvalue of the jth degree Casimir operator is
= z;(A Nap [0 1. (3.14)

The matrixa.‘A may be diagonalized as
(X TAX )y =1, 8aps (3.15)

where X, is theath component of the eigenvector of 4 to the
eigenvalue /,. Consequently,

= > (L.YQ,P., (3-16)

where

=S X, P,=3& ,b] (3.17)
b b
The explicit evaluation of Q, P, is given in the following
sections.

IV. THE osp(2m + 1/2n) SUPERALGEBRA

In this section, we evaluate @, P, in the case of the or-
thosymplectic superalgebra osp(2m + 1/2n). With the in-
dices ranging from — (m + n)to + (m + n), zero included,
the Perelomov-Popov matrix 4 becomes [see Egs. (3.8)—
(3.12)]

Asy =164 + 0,63 — [al 0,,, (4.1)

I, =[alth, +a+m—6,)+4mb,, —n, {4.2)
and therefore the equation defining X, is

(ly =1} Xy =[0]1 Q5" — 6,0 Xi, (4.3)
with

Qb = 2 X, (4.4)

We assume that all the eigenvalues /, are distinct and
come back to the degenerate case later. It is then clear that
X,, vanishes for b < a while X, is arbitrary. Without loss of
generality, we set X, = 1. For b > a, we must consider var-
ious possibilities.

CaseI: b>a>0 or O0zb>a or b>2>0.

In this case, the last term in Eq. (4.3) vanishes so that we
have
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=0t (@.5)
Hence

0t =X, +0r = (1+ 72 )0t e
with the solution

ot= 1 (1+ %L (47)
for b>a>0 or 0>b>a, and

0! =0: ﬁ1@+lf£) 4.8)

k=a-+
forb>ad>0.
Case I[I:a>b > 0.
In this case, the last term in Eq. (4.3) contributes so that
we have

(61 61
Xa:——* a _
T, 1 ¢ I, —1,

a

D¢ (4.9)

and
[b] ) bl 1
1+ — Xz .
Q ( l _1 Qa lb—la ba

It should be noted that X7, in these equations is known from
Egs. (4.5) and (4.7). Iteration of Eq. (4.10) yields

(4.10)

b

k] 1
H.<+1k_1a I —1, "

k=a+ b a
b—1 1 b [k]

- XEq 1+ )y
;, L —1 k:ICIH( L — 1,

(4.11)

and the sum may be evaluated in closed form. In particular,
for b = a we get
k=a+1 -

w—(
4

Collecting all these results, we conclude

[a]+1) al:l' <1+7;H<]T), (4.12)

L—1

0,=Qm+" = {H& [a]+1]
a a a0 1_ . Ia
m+n k
X I (1+ [[ ][) (4.13)
—a+4+ 1 —
om
A very similar calculation leads to
P, = [a] [1 16, ["_]+_1]
L —1,
x Ij _<1+ %) (4.14)
haT Lo
and therefore
0.2, = (a1 1 +11 5,0 2]
X (1 + [£] ) (4.15)
k #0,0.a [1\ et la
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V. THE osp(2m/2n) SUPERALGEBRA

In this section, we evaluate Q, P, in the case of the orth-
osymplectic superalgebra osp(2m/2n). With the indices
ranging from — (m + njto + (m + n), zero excluded, the
Perelomov-Popov matrix 4 has the same form as in the pre-
vious section except that /, is now given by [see Eqgs. (3.8) and
(3.9)]

l,=[allh, +a+m—0,)+4mb,, —n—06,4.(5.1)

If one now follows precisely the same steps as in the
previous section (keeping in mind that zero is excluded from
the range of indices), one obtains

_ (a] 1 k]
Q"P"‘[“][” Ia—la]kg.,(”’ lk~la)'
(5.2)

VI. THE u(m/n) SUPERALGEBRA

In this section, we evaluate Q, P, in the case of the gen-
eral linear superalgebra u{m/n). With the indices ranging
from 1 to m + n, the Perelomov-Popov matrix 4 becomes
[see (3.8)-(3.12)]

Aab =106ab - [a] eab’ (6.1)

I, =lallh, +a—1-2mb,,). (6.2)

The calculation described in Sec. IV now simplifies
drastically, and one finds

[k ]
= 1 L S0 N B 6.3
0.7, ["]Jl,( +1k—1.,) (6.3)
VII. CONCLUSION

Inserting the expression for Q, P, from Eq. (4.15), (5.2)
and (6.3), respectively, into Eq. (3.16) yields the final answers
for the eigenvalue of the jth degree Casimir operator for the
various superalgebras as quoted in the Introduction. We
make the following comments.

It would appear that these results can only be used in
the absence of degeneracy (recall that it was assumed in the
diagonalizing of the matrix 4 that its eigenvalues were all
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distinct). However, we know from the definition of the C; by
Eq. (2.15) that they must in fact be a polynomial in the com-
ponents of the weight. Hence all the denominators must, in
fact, divide out and, in this sense, the results are valid in the
degenerate case as well.

The general linear algebra u(m) may be thought of as a
special case of the u(m/n) superalgebra for » = 0. Similarly
the orthogonal algebras o{2m) and o(2m + 1) are special
cases of the orthosymplectic superalgebras o(2m/2n) and
o(2m + 1/2n) for n = 0, while the symplectic algebra sp(2n)
is a special case of the o(2m/2n) superalgebra for m = 0. Our
results for C; reduce to the corresponding results for the
ordinary algebras when m or n is set equal to zero. In making
the comparison with existing formulas in the literature for
the ordinary algebras, some care is needed with respect to the
conventions on ordering of weights. Thus our results are in
direct agreement with Nwachuku and Rashid,* who use the
same ordering convention, and are in agreement with
Okubo’ after the difference in the ordering conventions is
taken into account.
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The use of comparison filters in linear filter theory
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In the present paper, it is shown how the linear filter equation for a given correlation coefficient
can be solved in terms of the solution of the filter equation with a different correlation coefficient.
The second filter is called a comparison filter. One obtains an integral equation for the difference
of the two filters in terms of the difference of the two correlation functions and the solution of the
comparison filter. Thus if the comparison filter is known and its correlation coefficient is close to
that of the desired filter, one may regard the comparison filter as being an approximation to it. The
difference of the two filters is then small and perturbation expansions or variational principles for
the difference may be expected to give better results than if one did not use a comparison filter.
The difference in the solutions of the two filter equations may also be regarded as the change {or
error) in the filter due to a change (or error) in the correlation coefficient. Our result is obtained by
pressing the close analogy of the filter equation to the Gel’fand-Levitan equation of inverse
spectral theory. Another result of the use of comparison filters is to show that the filter equation

for the difference of filters satisfies a possibly useful grouplike property.

PACS numbers: 02.30. + g, 02.30.Rz

I. INTRODUCTION

In Ref. 1, Kay and Moses treated the Gel’fand—Levitan
equation of the inverse spectral theory problem from a very
general point of view and observed that the Gel’fand-Levi-
tan equation was a generalization of the filter equation of
that time, namely, the Wiener~Hopf equation. This observa-
tion continues to hold for more general filters, for example,
the Kalman filter. Recently, one of us (Moses, Ref. 2) gave a
general scheme for introducing comparison potentials for
which the solution of the corresponding Gel’fand-Levitan
equation is known. The solution of any other Gel’fand—Levi-
tan equation could be expressed in terms of the known solu-
tion through the use of an integral equation for the difference
of the known and sought for Gel’fand-Levitan kernels. The
use of comparison potentials led to perturbation schemes
and variational principles which, in principle at least, led to
more accurate approximations for the desired Gel’fand-Le-
vitan kernel.

The purpose of the present paper is to give the analog
for the filter equation. It is shown how the linear filter equa-
tion for a given correlation coefficient can be solved in terms
of the solution of the filter equation with a different correla-
tion coefficient. The second filter is called a comparison fil-
ter. One obtains an integral equation for the difference of the
two filters in terms of the difference of the two correlation
functions and the solution of the comparison filter. Thus if
the comparison filter is known and its correlation coefficient
is close to that of the desired filter, one may regard the com-
parison filter as being an approximation to it. The difference
of the two filters is then small and perturbation expansions
or variational principles for the difference may be expected
to give better results than if one did not use a comparison
filter.

The difference may also be regarded as the change (or

# Research sponsored by the Air Force Office of Scientific Research, under
Grant No. AFOSR-81-0253A.

2550 J. Math. Phys. 24 (11), November 1983

0022-2488/83/112550-03%02.50

error}in the filter due to a change (or error) in the correlation
coefficient. Another result of the use of a comparison filter is
to show that the filter equation for the difference of filters
satisfies a possibly useful grouplike property.

Il. THE FILTER EQUATION AS A GEL’FAND-LEVITAN
EQUATION

In dealing with the filter equation, we shall use standard
notation as given, for example, in Kailath’s monograph (Ref.
3). The filter equation is then

hits)=KIts)— fh (t,"K (7,5)dT (to<s << ).

(1)
In Eq. (1), & (1,5) is the filter matrix # {t,s) = {h,(5,5)}, and the

matrix K (t,s) = {K;(t,5)} is related to the signal correlation
matrix R (2,5) by
R,(t,s)=1,6(t —s) + K(t,5)=Ep(t p'(1). (2)

The Gel’fand-Levitan equation, as treated in Ref. 1, is iden-
tical to the filter equation in which # (¢,s) is the negative of the
Gel'fand-Levitankernel ¢ |K |s),and thematrix K (1,s)isthe
driving kernel (z |£2 |s) of Ref. 1. To press the analogy even
further, it is useful to define the filter matrix as having the
triangularity property

hlts)=0 for s>t (3)

In the space of observables which include the signals
y(t), let us define the operators in terms of integral operators
with kernels. For example, if /(¢ ) isin the space, we shall write

piie) [hiesissis, R fie)= [ Rufes) 195
" " (4)
and so on. Let us define the operator U by

Ufle)=ft)—hfit) (5)

In particular, if p(¢) is a signal,
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Uy(t) = plt) — (1), (6)
where 2(t ) = hy(t ) is the filtered signal. Thus Uy(¢) is the dif-
ference between the original noisy signal and the filtered sig-
nal.

Now let us define the operator 4, through its kernel by

h(t,s)=0 fors>1t,

holt,s) = hT(t,s) — K (t,5) + f\K (t,7)h (7,5)dr for r>s,
' o

where W is the full adjoint of the operator W with the ker-
nel W* (t,5). This full adjoint, as opposed to the matrix adjoint
W', is defined with respect to the full inner product

s = [ guisun 8)
so that W' is cieﬁned by

g Wf)=(W'gf) 9)
Hence in terms of matrix elements,

W;(t,s) = Wikisit)= Wls,t). (9a)

Let us define the operator U, by

U flt)=flt)—h,[fl1). (10)

Then, on using Eq. (7) in the form
hy=h"—K—Kh",
it 1s readily seen that the filter equation (1) is identical to
UR, =Uj. (11)
In fact, this is just Eq. (1.1) of Ref. 1. In deriving Eq. (11}, we

have used the fact that R | = R,.
One of the more surprising results of Ref. 1 is the fol-

lowing.
Theorem:
U,=U"". (12)

Since the proof'is given in Ref. 1, we shall not repeat it here.
Thus the filter equation, together with the triangularity con-
ditions on 4 and 4, is equivalent to

UR, U =1 (13)

together with the triangularity conditions. In Eq. (13) /s, of
course, the identity operator.

Eq. (13), which in the context of Ref. 1 is the Gel’fand-
Levitan equation in its most general form, is the basis of the
further work in the present paper. From Eq. (2) and {6), it is
seen that Eq. (13) leads to

E{De) — 20 )Ily'(s) — 2(s)]} =1, 8(¢ — ), (14)

which is the analog of the completeness relation obtained
from the Gel'fand-Levitan equation.

lil. THE BASIC FORMULAS INVOLVING THE USE OF
THE COMPARISON FILTER

Let us now consider the entire set of correlation func-
tions {R, =1+ K }. Consider any two of them which we
shallcall R\ =T+ K" and R = I + K™, respectively.
(Though we have labeled the correlation functions as though
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they had come from a discrete set, the set is not denumerable
and a continuous label could have been used.)

Let us define U™, U = [U'™] ' as being the filter op-
erators associated with R !, and define similar quantities for
the superscript m.

Furthermore, define

U(n,ml — U(n] Utomi — 1 _ h m,m)’
UE)"""' — [U(n,m) ]71 =yim ngb
— Ulm,ni =] h (m,n) . (15)
It should be noted that because of the triangularity proper-
ties of £ and 4 "' and the fact that
h nm) h (n) + h 1Om} _ h ln)h loml, (16)

which follows from Eq. (15), it follows that the kernel of the
operator #'"™" also satisfies the triangularity property

A" Es) =0 for s>t (17)
From Eq. (13) and (15),

Uiy Rimgrim tgyinm s — (18)
But

RY'=RY =Ry 4R )
Furthermore,

U"™R '},'"’U(m' T I (20)

Thus

U'™m R Lf:vrmUw.ml* =1, (21)
where

Ry"=I+U™[Ry —R"U™". 22

Equation (21) is precisely of the form Eq. (13). Thus, finally,
hom (gs) = K™ (8,5) — jh et (¢ AK 7 (7s)d 7. (23)

In Eq. (23), K" (2,s)is the kernel of the operator K "™ given
by

Kt — im [Rlynl — R 'lym)] Ut

— U(mh [K(ni ___qu)]Uunw. (24)

Equation (23) is the principal resuit of the paper. It is an
equation of the type used for filters and depends upon the
difference between two correlations and knowledge of a filter
associated with one of them. We may regard the filter labeled
by # as being the one we wish to approximate by a known
filter labeled by m. If the correlations of filter » and m are
close, one expects the operator 4" to be small in some
suitable sense. Perturbation theory or some other approxi-
mation based on the assumption that the correlations are
close and thus 4™ is small may then be expected to work
better than solving the filter equation directly for n. Having
obtained 4", one obtains U™ =T — h"™ and finally
U =gy, Since b satisfies the filter equation
with akernel such that I + K" is positive definite, one can
obtain a variational principle for the solution. This vari-
ational principle is discussed in Ref. 4. Though we shall not
repeat it here, a quantity which plays an important role is
tr A" (t,¢). In Ref. 4, it is shown that
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trh"™ (1) = tr E [2(t) — 2" (¢ )][z(t) — 2 (¢ )]
+tr H(t)G(t)C(t). (25)

In Eq. (25}, we have used the notation for the Kalman filter
as given, for example, in Ref. 3. Using the above techniques,
one can show

tr o (1) =tr AL (t¢) — tr A (5t ). (26)

Hence one can calculate tr £ (1,7 ) from a knowledge of the
mth filter and from the solution of Eq. (23).

IV. THE GROUPLIKE PROPERTY OF THE FILTER. THE
NOTION OF “PATHS” IN THE SET OF FILTERS

As we have seen in the preceding discussion, the opera-
tor U™ allows us to go from the mth filter to the nth filter
by means of a filter equation for 4™ in terms of the differ-
ence in the correlation functions of the nth and mth filter and
the solution of the filter equation for the mth filter. This
result is independent of the closeness of the correlation func-
tions of the mth filter to that of the nth filter.

From Eq. (15), one can go from the mth filter to the nth
filter through an arbitrary set of intermediate filters, since

Uem) — imn gy e, gy ,,,ml, (27)
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where p is the number of intermediate filters. The correla-
tions for the intermediate filters are arbitrary. Each set of
intermediate filters will be said to constitute a “path” from
the mth filter to the nth filter. Since the set of intermediate
filters is arbitrary, the method of constructing the nth filter
from the mth filter through the use of intermediate filters is
“path independent.”

The relation (27) is very similar to the composition rule
for the conditional probabilities of a Markov chain. It may
be possible to get another formulation for filter theory from
these notions. For example, one might consider the case
where the intermediate filters differ from each other by an
amount which is very small. One might then be able to go to
the limit of an infinite number of intermediate filters which
differ from each other by a decreasing amount.

'I. Kay and H. E. Moses, Nuovo Cimento, 10 (2), 917 (1955). Reprinted in L.
Kay and H. E. Moses, Inverse Scattering Papers: 1955-1963, Part 3{Math
Sci. Press, 1982).

2H. E. Moses, J. Math. Phys. 20, 2047 {1979).

3T. Kailath, IEEE Trans. Inform. Theory IT-20, 145 (1974).

*M. Kanal, S. K. Mitter, and H. E. Moses, Transport. Theory Statist. Phys.
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m

In this article, we analyze representations for the product %’ ;'I"(V)F . (r) with Z7'(V) specifying a
solid harmonic whose argument is the nabla operator d /dr instead of the vector r. Since both
?7" (V)and F Z’(r) are irreducible spherical tensors, we can use angular momentum algebra for
evaluating the product. Accordingly, the problem of finding a representation for the product is
reduced to the determination of the radial functions generated by the product. Analytical
expressions for these radial functions are derived by direct differentiation and with the help of
Fourier transforms. Closely related to the spherical tensor gradient &/7'(V) is the spherical delta
function & [(r). We derive new representations for & ;* by considering convolution integrals
involving B functions. These functions are closely related to the modified Bessel functions and
also to the Yukawa potential e ~ “/r. We show that the definition of the B functions can be
extended to include a large class of derivatives of the delta functions, where the spherical delta

function is just a special case.

PACS numbers: 02.30. + g

I. INTRODUCTION

If one analyzes polynomials in the Cartesian compo-
nents x, y, and z of a vector r, one can classify certain subsets
of them in terms of some transformation properties or sym-
metries. For instance, one may consider the class of homo-
geneous polynomials of degree /, i.e., those polynomials
which satisfy

Py(nx,ny,mz) = 'Pi(x.p.2) - (1.1)
A special subset of these homogeneous polynomials of de-
gree / are the so-called harmonic polynomials H, (x,y,z)
which satisfy Laplace’s equation
>’ >’ Vg
V:H (x.p.2) = ] + w + EE] H(x,pz)=0.
(1.2)

For a given value of /, only 2/ + 1 linearly independent har-
monic polynomials exist.! Hence it is possible to span the
space of harmonic polynomials by the so-called regular solid
harmonics

Y =r"I7ee), (1.3)

where Y *(6,¢ ) is a spherical harmonic, i.e., by polynomials
inx, y, and z that transform under rotations like irreducible
spherical tensors.

Obviously, the same classification scheme can be ap-
plied if we do not consider polynomials in x, y, and z but
instead polynomials in the Cartesian components d/0x,

d /dy, and d /3z of the gradient V. In this article, we want to
analyze properties of a differential operator, the spherical
tensor gradient % ["(V), which transforms under rotations
like a spherical tensor of rank 7.7 This differential operator is
obtained from the regular solid harmonic % {"(r) by replacing
x, y,and z by d /dx, 3 /dy, and 3/0z.

*' Author to whom correspondence should be addressed.
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This spherical tensor gradient was, in principle, already
used by Hobson in his book on spherical harmonics.® Later it
was studied by Santos,* Rowe,” and Bayman® in connection
with the derivation of addition theorems and multiple ex-
pansions, and by Stuart,” who investigated the connection
between nonclassical integrals of Bessel functions and delta
functions. Fieck® used the spherical tensor gradient to define
a special class of Gaussian-type atomic orbitals, and recently
we could show that some multicenter integrals over nonsca-
lar exponential-type functions can be generated from the
corresponding integrals over scalar functions by applying
the spherical tensor gradient.’

In this article, we want to derive compact analytical
representations for the expression

YIVF ), (1.4)

where the function F (r) is also an irreducible tensor. Al-
though such expressions as (1.4} have been investigated pre-
viously,*®” we shall show that the hitherto known results
can still be improved.

Closely related to the spherical tensor gradient is the so-
called spherical delta function

!
87(r) = A=
(27 — 1)1
where the differentiation is to be understood in the sense of
generalized functions.'® We want to derive some new repre-
sentations for the spherical delta function which can be con-
sidered to be a generalization of the well-known fact that the
Yukawa potential e ~ “’/r is the Green’s function of the
modified Helmholtz equation. In our approach, we exploit
the fact that convolution integrals involving the Yukawa po-
tential may be considered to be special cases of a more gen-
eral class of convolution integrals involving the so-called B
functions.'"'? B functions are exponential-type functions
that are closely related to the modified Bessel function of the

YT(V)6lr), (1.5)
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second kind. B functions were investigated in connection
with multicenter problems.”!''? It was found that multi-
center integrals of B functions are less complicated than
those of other exponential-type functions as, for instance,
Slater-type functions. Recently we could show that the ad-
vantageous properties of B functions in multicenter prob-
lems can be explained in terms of their extremely simple
Fourier transform.® The Fourier transform of B functions
will also be of considerable importance in this article. The
fact that the spherical delta function § " can be expressed in
terms of B functions is, as we shall show later, a direct conse-
quence of the analytical structure of the Fourier transform.

Ii. DEFINITIONS AND BASIC PROPERTIES

For the commonly occurring special functions of math-
ematical physics we shall use the notations and conventions
of Magnus, Oberhettinger, and Soni,'® unless explicitly stat-
ed.

The spherical harmonics Y ;6,4 ) are defined using the
phase convention of Condon and Shortley,'’ i.e., they are

il [ (204 DU — [m ]2

Yies)=i 4(l + |m])

P"cos ) e™.
(2.1)
Here, P /"!(cos 6) is an associated Legendre polynomial.

5

. dl +om (x- _ l)l

Pm — 1* 2
7x) ={ x7) FREERESTT
=(1 — x> d P,(x). (2.2)
dx"l

For the irregular solid harmonic, we write
Frey=r"""'YN0,8). (2.3)

The regular solid harmonic % }*(r) was already defined in Eq.
(1.3).

For the integral over the product of three spherical har-
monics, the so-called Gaunt coefficient, we write

(Lmy|Lumy|Lym,) = j YIN2) Y2 ) Y2 do

given by the expression (2.4)
}
These Gaunt coefficients may be expressed in terms of Clebsch-Gordan coefficients'” or 3jm-symbols
20, + 12, + 1)]”2 /
Im|lm,|Lm,) = [('—2— chl ch bt 2.5
(m|l\m,|Lm;) a2+ ) 560 Com. (2.5)
172 L 1 / A /
B [(21,+1)(212+1)(21+ 1)] ( ) ) ( A ) (2.6)
47 0 O m, m, —m
With the help of these Gaunt coefficients, we can linearize the product of two spherical harmonics:
Lax (2)
Y:0.8) YOG = > (Imy+myllimy|lmy) YT "™0,8). (2.7)

= min

The symbol 2'* indicates that the summation is to be performed in steps of two. The summation limits in Eq. (2.7) are given

bylx
lmax = ll + [2 * (28a)
max(|/, — L|,|m, + my|)
/ if [, +max(|/, —L]|,|m, + m,|) is even, and

max(|/; — L|,|m, + m,|) 4 1
if [ +max{{l, — L|,[m, + m,|) is odd.
(2.8b)

In the sequel, we shall frequently use the following combina-
tions of the three angular momentum quantum numbers /,,
1, and [:

Al=(l, +1,—1)/2, (2.9a)
Al =(I—1,+1)/2, (2.9b)
AL =(+1,—1L)/2, (2.9¢)
ol)=(,+L+1)/2. (2.9d)

It is an immediate consequence of the summation limits in
Eq. (2.7) that these quantities are always positive integers or
ZEr0.
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r
In this article, we want to use the symmetric version of

the Fourier transformation, i.e., a given function f(r)and its

Fourier transform f(p) are connected by the relationships

7o) = (27) " f e " flr)dr, (2.10)

i) = (27" J e F(p)d’p. 2.11)

For the explicit evaluation of such Fourier integrals we
use the Rayleigh expansion of a plane wave in terms of
spherical Bessel functions and spherical harmonics:

- /
et XY — 47 >y (£ i) (xy) Y7 (x/x)Y Py /y) .
I=0m= —1
(2.12)

The spherical Bessel function is related to a Bessel function
of the first kind by

Jn&)=(m/22)2J, 1 0(2) . (2.13)
If K, (z) stands for the modified Bessel function of the
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second kind, we define the reduced Bessel function with ar-
bitrary order v by

k,(z) = (2/m)*2K,(2) . (2.14)

In the case of half-integral orders, v = n — 1, n€N, the re-
duced Bessel function can be represented by an exponential
multiplied by a polynomial'®:

N - T Iy
&1 g — 1120 — 2q)

As we found out recently, the polynomial part in Eq. (2.15)

has also been investigated independently in the mathemat-

ical literature.?® There. the notation

0,(2) = ¢k, . 12(2) (2.16)

is used. Together with some other closely related polynomi-
als, the polynomials 6, (z) are called Bessel polynomials.
They find applications in such diverse fields as number the-
ory, statistics and the analysis of complex electrical net-
works.?

As a nonscalar generalization of the reduced Bessel
function, the so-called B function was introduced™':

k, \nl2)= (2.15)

mlar)=[2""'(n 4+ 1) &, (2.17)

In the sequel, it will be tacitly assumed that the order n ofa B
function will always be a positive or negative integer. The
factorial in Eq. (2.17) requires that » + />0 holds. However,
as we shall show later, Eq. (2.17) remains meaningful even if
n + I <0holds. It is, of course, clear that such objects are no
ordinary functions, but, instead, they have to be interpreted
as distributions.

In this article, we shall discuss only those properties of
B functions that are relevant for the representation of the
spherical delta function § /", defined in Eq. (1.5), in terms of B
functions. More complete treatments of the mathematical
properties of B functions were given elsewhere.”!""1>2%%3

_pnlan Yiar).

lll. APPLICATION OF THE SPHERICAL TENSOR
GRADIENT—DIRECT DIFFERENTIATION

We want to apply the spherical tensor gradient %/ (V)
to a relatively large class of functions f:R*—C. We only re-
quire that these functions can be differentiated sufficiently
often with respect to x, y, and z and that they are irreducible
spherical tensors of a given rank, i.e., that these functions
can be written as

F7ir)= fi(r) Y'(x/F). 3.1)

In this and the next section we want to derive and analyze
analytical representations for the product

IV F), (3:2)

which is just a spemal case of the well-studied problem of the
coupling of two irreducible spherical tensors. Accordingly,
we shall use angular momentum algebra in order to deter-
mine the general structure of the desired result.

Let.S /' and T [ be the components of two sets of irre-
ducible spherical tensor operators S’ and T * Then the
tensor product of §'*7 and T'**' is defined by the sum**
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[Slkx)x le:)]lﬁt — Z Cﬁ,ﬁ; S #. T u
il
With the help of the orthogonality properties of the Clebsch—
Gordan coefficients, this relationship can be inverted to
yield

(3.3)

Sh T,ﬁ‘j—EC"“"

\Mopty A s [S(k‘]XT(kll]lflle“: . (34)
The summation limits in Eq. (3.4) are determined by the
selection rules satisfied by the Clebsch—Gordan coefficients.
Comparison of Egs. (3.2) and (3.4) shows that we have to

expect a result of the following general structure:

[/ 9 F )] e 7.
(3.5)

YPVE) = S Ol
[

mym,m, + m.

The spherical harmonics Y (8,4 ) are a complete orthonor-
mal set in the Hilbert space of functions that are square inte-
grable with respect to an integration over the surface of the
unit sphere in R*. Hence we can express the components of
the tensor product in Eq. (3.5) in terms of a spherical har-
monic multiplied by a function that depends only on the
distance r:

[ V)X F S =g, (Y (0/r).

We now exploit the fact that, under a reflection where

r— —rand V— — V, both sides of Eq. (3.5) must transform
identically. From the fact that a spherical harmonic ¥} has
the parity ( — 1)’, we may conclude that /, + /, + / hasto be
an even integer or zero or, equivalently, that the /-summa-
tion in Eq. (3.5) proceeds in steps of two. Hence we finally
obtain the following structure for our desired result:

/V"‘AX

Z ? C”m my o+ omy gl/ (r) Y;"'4 ’"\(r/r)'
[ .
(3.7)

The summation limits /_,, and /_,,, agree with those that
occur ir the linearization of the product of two spherical
harmonics, Eq. (2.7), and are given by Eq. (2.8).

Equation (3.7) was the starting point of the analysis of
Bayman® who derived an explicit expression for the func-
tions gﬁ‘ ., (r). However, as will become clear later, it is advan-
tageous to proceed in a different way. We define instead

20+ 120, + 172
L—ﬁﬁ——l Clt 7).

The Clebsch—Gordan coefficients can now be replaced by a
Gaunt coefficient, and Eq. (3.7) can be rewritten as

YY) F )

[mu.(

Z @ lm, + my|lim | |Lmsy) vi, (r

[,

(3.6)

YY) F () =

min

g// (r)= (3.8)

JY 7 (/)
(3.9)

With the help of angular momentum algebra, the problem of
deriving an explicit expression for the product (3.2) could be
reduced to the determination of the functions y;, (7).

Let us first consider the case that F{'(r)is a tensor of
rank O, i.e., a scalar function. Then we can obtain the desired
result most easily with the help of a theorem of Hobson?’:
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Let f,{x,y,z) be a homogeneous function of degree » in the
variables x,y, and z, and let F be any function that depends
only on ” = x? + y? + z°. Then the application of the homo-
geneous differential operator f, (3/0x,3/dy,d/3z) on F(r)
can be expressed in closed form by

(553

= Z r - [(*d—)”in(rz)] V4 £ (xp.2).  (3.10)

g=0 q' dl'z
A substantial simplification is obtained if £, (x,p,z) is a solu-
tion of Laplace’s equation, because in this case only the term
with g = 0 is different from zero. Hence if f, stands for a
solid harmonic %", we obtain

tensor F Z'z(r) or rank /, > 0, it is important to note that the
functions 1/5 1.(r)in Eq. (3.9) do not depend upon the magnetic
quantum numbers m, and m, and can be considered to be a
kind of reduced matrix element in the sense of the Wigner—
Eckhart theorem. Hence one can try to find an explicit repre-
sentation for ;/f ;, for some special values of m, and m,,
which, because of the general structure of Eq. (3.9), then
holds for all admissible values of m, and m,.

The solid harmonics with m = + [/ have a particularly
simple structure :

1+l [(21+ 1)[]1/2
ll|
Following Bayman® we apply the differential operator

% (V) to the function F;~ “(r). From the general rules of
angular momentum coupling, it follows that for m, = /, and

Y = (x + i) (3.15)

!
Y™V F () = [ 2! (i) F(rz)] Ymir). (3.11) m, = — I, we have, in Eq. (3.9), the summation limit
dr* Lin = |1} — 1], 1., all possible values of / will be covered by
If we now set F(r?) = ¢ (r), we obtain the result. We then obtain
m 1 dY m YLV F M)

7= (-6 | @rin piy
where we used 477 2’ +1 , |1 !

d _1d ( 3 )" Luln)

L 4 3.13 — ). 3.16
Hobson® used Egs. (3.10) and (3.11) to derive the following In order to perform the differentiation, we use
well-known result: (_8_ . ii)k £ - ( ) £in o)

(V) LI (— 1) (20 = 1) Zr). (3.14) dx ay/ o ar/ ¥

r
d a _

For the treatment of the general case when the spherical (‘g + i 8—) (e — i)' = (= 2/ (= Dl — i)' =%
tensor gradient % Z"(V) is applied to an irreducible sphericalI (3.18)
Here, ( — 1), is a Pochhammer symbol. With the help of the theorem of Leibniz, the differentiation can be performed, and we
obtain, for Eq. (3.16),

1 171172 — (= . kfilr
fy;:(v)Flflz(r)z [(2[. + 1).(2]2+ 1)] ( l)k( 2l,~l\(x+ly)k(x_l.y)12,1|,k(i;?-) f};l( ) ) (3.19)
; r ar :

In the next step, we express (x + iy)* and (x — iy)* ~ "~
the two solid harmonics according to

bnan (2)

IR Y = S

/ - [mln

(Im, + m,|l,m |lm,) rhrh

4 28 1) “b 25k |

—1 g;ﬂ, + m. (r) ,

* in terms of solid harmonics according to Eq. (3.15). Then we couple

(3.20)

which is an immediate consequence of Eq. (2.7). Finally, we introduce the new summation variable ¢ = /, — & to obtain, for

Eq. (3.19),

Y4 (V) F

7[21'2
s i) q; (21, — 2g + )21, — 2g + 1)!

L+h-29 (2

X z (UL = LI —ql, —qll, —

1=l — L]

(21, + 121, + 1) ]1/2 Pt (Li)"_" S, (7)
(=2)g! \r dr

99— L) Y7 (x/r).

e

(3.21)

In order to obtain a result of the same structure as Eq. (3.9), it is necessary to have the /-summation as the outer sum and the g-
summation as the inner sum. The summation limits of the /-summation would then be |/, — /,| and /, + /,. The limits of the ¢-
summation follow directly from the triangle condition of angular momentum coupling, which yields

Og<il, + 1, —1)/2 =41

With these summation limits, we obtain, for Eq. (3.21),
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(3.22)
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L+h (2)
VMFI =S Y
{ 4]

=l —

Al 1/2
(24, + 2L+ 1) 0— L1 —al —all —aa — 1
q-o[(211—24+1)!(21 2+ 1) (Ul — Ll —ql, —qll, — 99 — L)
I+ 1, — 2 —
X ,,( ) Ll (3.23)
(—2)%g! \r dr r:
On the other hand, if we set m, =/, and m, = — [, in Eq. (3.9), we obtain
L+ (2)
YV F )= > (M — LILLL = L) vl () Y B/ (3.24)

1=k
Comparison of Egs. (3.23) and (3.24) yields the following relationship which clearly demonstrates the group-theoretical origin
of the numerical coefficients that occur in the g-summation:

al 1 1 1/2 _ _ _ _ _ o+ —2q
=S (21, + 12, + 1)! ] U, = LI, —ql,—qll,—qq—1) r ( ) e i) 3.25)
Sol(20, — 2g + 1)21, — 2g + 1)! (Ul — LILL|L — 1) (—2)%g! \r dr T
In the next step, we express the quotient of Gaunt coefficients in terms of 3jm-symbols according to Eq. (2.6). We obtain
(l—q L, — l)(l—q L—q | )
S = Z [ (21,120,)! ]'/2 0 0 o/\l,—q q—1, L,—1J) i+t (Li)’-—qf,:(r)
M & L@l — 290120, — 29) (1, I, l) (11 Lo ) (—2)gt \r dr r
0o 0 o\, -1 L-—I
(3.26)
Fortunately, all 3jm-symbols occurring here can be expressed in closed form?®
(fl 2 J‘) (s [ U +J2 + My —Jo + M =1 +J) ]“2
0 0 0 (Ji +/2+j+ 1!
xRt (3.27)
((Jr + 12 =2 — T2 + 1202 — 1 +5)/2)!
GOSN | (2 — s + My + o+ mlj = m! C pag)
o —h—=m m (s + 72 +J+ Dy =1 + DM+ =M —Jy — m)j + m)!

If we insert these expressions into Eq. (3.26), we find that most terms cancel. After some algebraic manipulations we finally
obtain, where 4/ and o{/) are defined in Eq. (2.9),

al (Al (—all)—1/2)

L—gq
QUED> — 499 o+l 2 (%%) _f:lf” . (3.29)

This representation of the function ¥}, ., [7) is much more compact than the equivalent expression for the function g, ), derived
by Bayman.?” We started from Eq. (3.9) which contains Gaunt coefficients, whereas Bayman started from Eq. (3.7) which
contains Clebsch—Gordan coefficients. Hence the introduction of Gaunt coefficients instead of Clebsch—Gordan coefficients
leads to a substantial simplification of the numerical coefficients and to an improved applicability of the result.

IV. APPLICATION OF THE SPHERICAL TENSOR 'multiplied by a radial integral

GRADIENT—FOURIER TRANSFORM METHOD Fr) =F(p) Y7(p/p), (4.3)
Fourier transformation can advantageously be used to _ -

derive new representations for the function ¥}, (r) defined in flp)=(—ifp~'"? f PPN filndr.  (44)

Eq. (3.9) because a differential operator is transformed into a . 0

multiplicative operator which usually can be handled much If we insert these relationships into Eq. (4.2), we obtain an

more easily. Hence in this section, we shall require that the integral representation for the radial function f,(r):

following two integral representations exist: S -
filn=ir=12 f P inlrp) fip)dp . (4.5)
(4]

Frp)=(2 -WJ TR EP(rd r, : .
r(p) = (2m) € rrid°r (41) By similar means, we can derive an integral representation
Frie) — (22 [ e Fripla? for the function y; , (7). We use
)= (2m)~ e"P . 4.2 . ] ,
i ) f ! (p} p ( ) @;n(v) elr-p — Jy;n(lp) ell"p (46)
We now use the Rayleigh expansion of a plane wave Eq. together with the Rayleigh expansion Eq. (2.12) and the cou-
(2.12) to express the function F }*( p) as a spherical harmonic pling rule of two spherical harmonics Eq. (2.7) to obtain
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Y9 Fo(e) = (2m) f &0 i) F"(p) d *p

Imax (2)

=2

1=1

min

X Y/

(Im, + m2'11m1|12m2)

Xr— I/ZJ Pl' 2 Jiy 1/2(’P)Zz(p) dp .
o

(4.7)
If we compare Egs. (3.9) and (4.7), we immediately obtain an
integral representation for the function y; , (r):

Yol =il e f P, ol p) dp
0
(4.8)

With the help of the integral representations {4.5) and (4.8),
we want to derive new differential operators which yield
7,1, (r) when applied to £, (r). The differential operators we
are looking for have to transform p*'*J, _ ,,,(rp) into

p" T2, |, (rp). As we shall show in this section, this can
be accomplished by a suitable application of known differen-
tial properties of the Bessel functions of the first kind. We use
the well-known relationships

1 d\™ ., vem

(-——z —dz) 22 =2"""J, .2, (4.9)
Ld\" o e

(7?12) z V) ==z, 02, (4.10)

to obtain immediately
1 d

(_ _)m xJ, (xp) = y"x" ", (%), (4.11)
x dx
1 d m v m m.. —v—m
() b= (= 17 57 bl
x dx
(4.12)
These relationships can also be combined to give
(_1- _d_)mxz”' - ZV(L _d_>mx"J" (xy)
x dx x dx
=(—1"ymx J, (xy), (4.13)
(_1__ i)’nx21' + 2m<i _i_)”’x vJV (xy)
x dx x dx
=(—1mpy*xJ (xy) . (4.14)

By a suitable combination of these differential relations, we
can derive the following differential operators which con-
nect the functions f, (r) and y;, (r):

ey

g )
Vi )

(LY e (LAY g e
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7’5.1: (r)

:r—l—l(ii>A11rl,—lz+3l+ 1(ii)m"r 211
r dr rodr

X(‘i— %)IZ T, (4.17)
7’5.1, r)
oy (e
(8 413

It should be noted that the differential operator in Eq. (4.17)
is meaningful only if /,>/ holds. Analogously, Eq. (4.18) re-
quires />/,. The symbols 4/ and A/, were defined in Eq. (2.9).

These new representations for the function y;, (r) seem
to differ significantly from Eq. (3.29) which was derived by
direct differentiation. Nevertheless, their equivalence can be
proved quite easily. As an example we shall now prove the
equivalence of Egs. (3.29) and {4.16). If we combine Eq. {3.13)
and the theorem of Leibniz we obtain, after some algebraic
manipulations,

(L) (L) = 35y

4 dr ¥ dr s=0 =0
g (T AL + 172, (1 — sl — 1 — 172),
(I, —s — t)islt!
I —s—1
Xtz 2”*’(if_> YAy . (4.19)
r dr :

We now introduce the new summation variable g = s + ¢
and obtain, after an elimination of  and some manipulations
with Pochhammer symbols,

e IR L WA

r dr r dr
< b 122),(- 1y,
g0 q'
w 2qr1,+1371—2q<ii)]‘7q flg(")
r dr r[f

g, — Al AL+ 172, — 11, — g + 3/2;1) .
(4.20)

The generalized hypergeometric series ,F, in Eq. (4.20} can
be expressed in closed form with the help of the summation
theorem of Saalschiitz**
Fhlab,eid,e;l)
_ T va—el(i+b—eal(l+c—e 4,
T —elfd—ald—»bld—c
which holds for terminating hypergeometric series ;F,
whose parameters satisfy
a+b+c+l=d+e.

This summation theorem yields, for the terminating hyper-
geometric series in Eq. (4.20),

XSFZ(

(4.22)
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Fol—q, —ALAL + 172, — 1, — g + 3/2;1)
(= Al (—all)— Y,

(==L =1,
Inserting this expression into Eq. (4.20) shows that Eqgs.
(3.29) and (4.16) are indeed equivalent. The equivalence of
the other representations for the functions ¥}, (r) can be
proved by the same technique. When we proved the equiv-
alence of Egs. (3.29) and (4.16), we found still another repre-
sentation:

(4.23)

— AL)(4Al, +1/2)

&% s ( s -4 26 -1
7’?.1: (r)= .Z’o 2 E phok
I, —s
% (% %) Ay (4.24)

Which one of the representations for 3}, (r) presented in
this article or of the equivalent formulas of Santos® or Stuart’
is best suited for practical applications cannot be decided
without explicitly considering the functional form of f, (r}.
Nevertheless, we think that because of the large number of
functions f; (r) which are of interest, it should be advanta-
geous to have as many representations as possible available.

As the generalization of the spherical tensor gradient,
the differential operator

V2 (Y (4.25)

may be considered. It was used by Santos,* Rowe,’ and Stu-
art’ or, in the book of Brink and Satchler,?’ in connection
with multipole expansions. If we apply this operator to a
spherical tensor we may derive the following integral repre-
sentation:

vZn jy;'l'l(v) F;:'z(r)
loan (2)

XG LY e/,
G

{(Im, + m,|lim,|l,m,)

(4.26)

— I-/ + 1, +2nr— l/zf p2n+ i +3/2JI+ 1/2("[7} ]}(p) dp )
0
(4.27)

For these radial functions G || (r), explicit expressions may
be derived quite easily. For instance, combining Egs. (4.13)
and (4.15) yields

G7iir)
— rl(_l_i)"rhizlf 1(Li)n+41r1,+12+ I+1
r dr r dr
1 d)‘”-’ JSi(r)
X|— = A 4.28
(r dr 7 (4.28)
Also, if we combine Egs. (4.14) and (4.16),
()
— i 1(Li)"r2n+21+ 1(ii)"+‘”2 Pl i1
r dr r dr
Al
X (L i) UL (). (4.29)
r dr :
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V. SOME PROPERTIES OF 58 FUNCTIONS

In this section, we want to discuss those mathematical
properties of reduced Bessel functions, defined in Eq. (2.14),
and their anisotropic generalization, the so-called B.func-
tions, defined in Eq. (2.17), which are needed for the repre-
sentation of the spherical delta function &7 in terms of B
functions.

As can be seen from Eqgs. (2.15) and (2.17), B functions
have a relatively complicated analytical representation.
Nevertheless, as we could show recently, the Fourier trans-

form of a B function is of exceptional simplicity*’:

B7/ap) = (M)"‘“J"""B ™ (r)d r

a2n+l—1

It seems that the Fourier transform of a B function is more
compact than the Fourier transforms of all other exponen-
tially declining functions. Hence the Fourier transform of a
B function may be considered as a kind of basic function in
momentum space. This also explains why so many expan-
sions of exponentially declining functions in terms of B func-
tions or, equivalently, in terms of reduced Bessel functions
could be derived, for instance,*'**

= (2/m)""? Y - ip). (5.1)

n — —x i (_l)n,pn! .
X le = k , 52
P:EP:,..... 2p —n)2n —2p)t 7 12 (%) (5.2a)

n/2 if n is even,

" 5.2b
Prin (n -+ 1)/2 if nis odd, ( )
LL‘,,a’(zx) =3 (=2 n+a+t+1) b

ot n— )W (a+ 2t + 1)
(5.3)
e~ *L @(2x)
¢ (=2ATin+a+r+1)
=@2n+a+l
( ),Zot!(n—z)!r(a+2t+2)
Xlzt + 172 (-x) (54)

Here, L ' is an associated Laguerre polynomial. It should,
however, be emphasized that these expansions were not de-
rived using Fourier transform techniques. Instead, they were
obtained by a straightforward rearrangement of the polyno-
mial part.

The application of the Laplacian V*toa B function can
be expressed as*

a VB arxr)=B](ar)— BT | ,(ar). (5.5)
Hence we see that the differential operator 1 — a =2 V2,
which is essentially the differential operator of the modified

Helmbholtz equation, can be viewed as a ladder operator of
the B function,

[l —a V1B ar)=B"_ ,(ar). (5.6)

This relationship can also be derived immediately from the
Fourier transform of a B function, Eq. (5.1), because in mo-
mentum space, the operator 1 — a2V is transformed into
[a® + pl/a’.

The repeated application of the Laplacian V? can also be
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expressed quite easily. We use the binomial theorem in con-
nection with Eq. {5.6) to obtain

d v
a”*V¥B 7 (a,r) = 1;0( -1y (t ) B lar). (57
In momentum space, the spherical tensor gradient

% 7'(V) is replaced by the solid harmonic % }*(ip). Hence,
from the Fourier transform of a B function, Eq. (5.1}, it may
be deduced that the application of the spherical tensor gradi-
ent to a scalar B function yields a nonscalar B function,**

(4m)'/?
(—a)
Of course, this result may also be derived with the help of Eq.
(3.12).

The centerpiece of the theory of B functions has so far

been the convolution theorem.'*!* In the case of equal scal-
ing parameters we have

Blar) = YTV B plar). (5.8)

f B (ax — VBT (ay)dy

41 Imax (2)
=? 2 {m + my|lym,|lym,)
17

min

A4l A
xS =1 () Brr e (59)
t=0

It is of some importance to note that Eq. (5.9) differs slightly
from the form in which it was derived. In the original publi-
cations,'""'? overlap integrals as they occur in quantum
chemistry were considered, whereas here we consider convo-
lution integrals. Overlap and convolution integrals are con-
nected by

f B (ax—y) B (ay)d’y

St fB “rMNay) Bl — x)dy . (5.10)

The convolution theorems of B functions were originally de-
rived with the help of an addition theorem.'"'> However, as
we could show recently,® these convolution theorems can be
derived much more easily if one makes use of the fact that the
convolution integral of two functions f and g can be repre-
sented as an inverse Fourier transform,*

f Flx - yigly)dy = f ¢ 7{plg(p)d ’p

Here, f and g are the Fourier transforms of f and g accord-
ing to Eq. (2.10). Hence the simplicity of the convolution

theorems of B functions''""'? is a direct consequence of the
simple analytical structure of the Fourier transform of a B

function, Eq. (5.1).

(5.11)

VI.THE REPRESENTATION OF THE SPHERICAL DELTA
FUNCTION BY A B FUNCTION

In this section, we want to show how the spherical delta
function

(=1

o) =

A P(V)8(r) (6.1)
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may be represented by a B function. In this context it is
advantageous to consider convolutions

| rix = yvigta’y 6.2)
instead of ordinary integrals
ff(x)g(x)d . (6.3)

A convolution integral exists for a relatively large class of
functions f and g. In particular, a convolution integral
usually remains well defined if f or g are distributions, and
sometimes even if both f and g are distributions. The exis-
tence of integrals like (6.3) is guaranteed only if much more
restrictive conditions are imposed on f and g. An integral
(6.3) need not exist if f or g is a distribution, and the integral
of the product of two distributions is generally not defined.
As we already mentioned earlier, a B function

Brax)=[2" (n+ 1]k, .lar) Y T(ar) (6.4)

is classically defined only if the inequality » + />0 holds. In
this section, we want to analyze how the above definition of
B functions can be extended to such values of » where
n + [/ <0 holds, i.e., to those cases where
(n + 1) =TI (n~+ 1+ 1)in the denominator in Eq. {6.4) be-
comes singular. It is obvious that such objectsas B , _, ,
n = 1,2,..., cannot be ordinary functions but have to be inter-
preted as distributions.

We shall show in the sequel that functionals containing
B functions can be found that remain well defined even if the
order » becomes negative and satisfies the inequality
n + [ < 0. With the help of these functionals, the distributive
B functions can be identified. Our analysis will, to a large
extent, be based upon the convolution theorem of B func-
tions Eq. (5.9) and upon the differential operator 1 — o ~2V?
which acts as a lowering operator for B functions according
to Eq. (5.6).

Let us first consider convolutions with the scalar func-
tion B 3, which essentially corresponds to the Yukawa po-
tential e ~ “"/r because of

B{,layx) = (4m) % “/ar. (6.5)

From Eq. (5.9), we then obtain

fBg.o (@x — y) By yldy = (4m) Pa BT, | ar).
(6.6)

The convolution ofa B function with the function B 3 , mere-
ly increases the order » by one. Accordingly, Eq. (6.6} defines
araising operator for B functions. Theinverse operatoristhe
differential operator 1 — a ~*V* because of Eq. (5.6). We now
exploit the fact that the composition of the two ladder opera-
tors must yield the identity. Accordingly, we apply the dif-
ferential operator 1 — a~2V? to the convolution integral
(6.6). We differentiate under the integral sign and obtain,
with the help of Eq. (5.6},
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J [1—a2V2] BOy(ax — y)B (@y)dy

- fBOA Lolax —y) B /{ay)d Yy

_ (477.)1/2
- 3

Bax), (6.7)

which obviously implies, withV, =V, __,

(iR

[1—a™?V?] Boylax) =B plax) = 8(x) .

(6.8)

This result becomes much more transparent if we repeat our
derivation in momentum space. However, in order to show
that the above result is not restricted to B functions but that
it is of a more general nature, we prefer to consider the con-
volution of B 3, with a relatively arbitrary function
FfR3>—C. Concerning f, we only require that the Fourier
integral (2.10) and (2.11) exist. With the help of Egs. (5.1) and
(5.11) we represent the convolution integral under considera-
tion by an inverse Fourier integral, i.e.,

f Blolax —y)f(y)d’y = f B, (a,p) F(p)d *p

eix~p _ 5
- (272)1/2 J- a2+p2 Sfip)d°p. (6.9)

Here, f(p)is the Fourier transform of f(x) according to Eq.
(2.10). The application of the lowering operator 1 — a ~2V?
then again leads to Eq. (6.8), if we differentiate under the
integral sign and use Eq. (5.6),

J [1—a ?Vi] Boslax —y)flyd’y

= f B olax—y)flyd’y

_ (477.)1/2
__;3_

(77,)12

——f(x).
(6.10)

Hence we see that the application of 1 — @ ~2V?, which cor-
responds to (a® + p?)/a?, transforms the representation of
the convolution integral (6.9) by an inverse Fourier integral
into an integral representation for the function f.

So far, we applied some mathematical properties of B
functions to find a new derivation of the well-known fact
that the Yukawa potential e ~ “"/r is the Green’s function of
the modified Helmholtz equation. However, our approach
can easily be extended to nonscalar functions. For instance,
we set n, = — [, in the convolution theorem (5.9) to obtain

(2" f & Flp)d *p =

f B™, , (ax—y) B (ay)d’y

Imax (2)

=_7TZ

a1=

x3 (—1)‘( Verir utan.

Again applying the lowering operator 1 — a~2V? yields a
functional which is perfectly well defined for sufficiently
large values of 7, and /,:

(Im, + my|lym|l,m,)

(6.11)
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fB m s ax —Y) B (ay)dy

47 Imax (2)
(Im, + my|l,m,|l,m,)

X ti(— 1y (AI)B'"'+, s, lenx) (6.12)

In order to identify this distribution, we consider the special
case that the other B function is scalar, i.e., /, = 0. After a
rearrangement of quantum numbers, we then obtain

fB’"_ L lax —¥) B olay)dy

= ((4m)"*/a®) BT (ax) . (6.13)

For a scalar B function, the convolution with the distribu-
tion B™ ;_ |, has essentially the same effect as the applica-
tion of the spherical tensor gradient according to Eq. (5.8),
i.e., it produces a nonscalar B function of rank /:

fB lax—y) B, olay)d’y

=(—1){dn/a' ) YT(V)BY  olax). (6.14)
Consequently, the distribution B ,_ | , must be propor-

tional to the spherical delta function 8

B7,_yax)=(— 1) L
a

YT(VIEx)

=2

(6.15)

In order to demonstrate the general nature of this result, we
consider the convolution of the tempered distribution B ,,
with a relatively arbitrary function £fR*—C:

fB 7 olax—y) flydly.

Concerning f, we only require that the convolution integral
as well as the Fourier integrals (2.10) and (2.11) exist. We
could show recently that for the tempered distribution

B ™ ,,, the Fourier and inverse Fourier transform can be de-
fined with the help of a suitable regularization® although
these integrals may not exist in the sense of classical analysis.
Accordingly, we can use Eqgs. (5.1)and (5.11) to represent the
convolution integral (6.16) as an inverse Fourier integral

(6.16)

fB "X — ¥ )y = f ¢**B™ | () Flp)d *p

(2/m)"? X
i b o YF )T .
We again use the lowering operator 1 — a V. Differentiat-
ing under the integral sign in connection with Eq. (5.6) then
yields

(6.17)

fB " lax —y) flvld Yy

1/2 _
= (2/17:)‘“3 f‘-""‘"’ Y7(—ip) flp)d ’p

Finally, we use Eq. (4.6) to convert the Fourier integral in
Eq.(6.18)intoan integral representation for the function f(x)

(6.18)
a
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onto which the spherical tensor gradient acts:

J‘Brrl}

‘(—1)

plax —y) flyd’y

- pvem > e Fipia

47

I+ 3
a%

= (=1 == 77V S(x). (6.19)

In view of these results, we can distinguish three differ-
ent kinds of B functions according to the magnitude of the
order neZ.

(i) n> 1. These functions B, are absolutely summable
and square summable, i.e., they belong to the space L '(R?)
and L *(R*).

(ii) — /<n<0. These functions are tempered distribu-
tions and are, in general, neither absolutely summable nor
square summable. However, just as in case (i), they can be
defined with the help of Eq. (6.4).

(i) n < — . These B functions are derivatives of the
delta function. They can only be defined recursively with the
help of Eq. (5.6). Accordingly, we obtain from Eq. (6.15), for
n=12,..,
B, lax)=(—1{dr/a" "’

X [1 —a V"

= (2] — 1)4m/a’+ )[1

" TV)S(x)

a V21" 8T(x)
(6.20)

In that context, it may be interesting to niote that in contrast
to coordinate space, no distinction concerning the magni-
tude of the order n is necessary in momentum space. The
analytical representation of the Fourier transform Eq. (5.1)
remains valid for all orders neZ. Nevertheless, the Fourier
transforms B .1 can also be computed recursively. It is an
easy matter to show that the functions B », are unique solu-
tions of the functional equations

B7(ap) = (a/l&’ +p) B ,la.p), (6.21)
B lap) = (4m)*/a')y 47 —ip) BY, \olap), (6.22)
B | la.p) =a*2r) 2. (6.23)

These functional equations clearly show the intimate rela-
tionships between B functions, the differential operator of
the modified Helmholtz equation, the spherical tensor gradi-
ent, and the delta function. These relationships also show
that because of its simplicity, the Fourier transform of a B
function may be considered to be a kind of basic function in
momentum space.

From Egq. (6.22) we can immediately see that the appli-
cation of the spherical tensor gradient to a nonscalar B func-
tion is equivalent to the coupling of two solid harmonics.
Since a spherical tensor gradient and a solid harmonic trans-
form identically under rotations, we must have the same
coupling law

AR

=1,

Xv[v + 1y -

2)
{Um, + my|lim\|lym,)
L) (6.24)
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Combining this result with Egs. (5.7) and (5.8) yields

YY) B (ax)

hnax (2)

=(—al 2
X Z( -1y ( /)BZ,’"**,f’ff ¢ olax).

This relationship is structurally almost identical with the
convolution theorem of B functions, Eq. (5.9). This similar-
ity is easily understood if we take into consideration that we
can also derive Eq. (6.25) by inserting Eq. (6.15) into the
convolution integral (6.12).

If we compare Eq. (6.25) with the general results that
were derived in Secs. III and 1V, we see that the application
of the spherical tensor gradient to a nonscalar B function
leads to particularly simple expressions. Another advantage
of Eq. (6.25) is that distributions which occur if
n, + I, — t <0 holds cannot be overlooked, whereas the gen-
eral expressions in Secs. I1I and IV require some caution.
Hence particularly for exponentially declining functions, it
may well be the most convenient approach to express the
function under consideration as a linear combination of B
functions and then apply the spherical tensor gradient ac-
cording to Eq. (6.25).

(Im, + m,|lm,|l,m,)

(6.25)

Vil. SUMMARY AND CONCLUSIONS

The spherical tensor gradient 7 ;"(V) is a differential
operator which transforms under rotations like an irreduci-
ble spherical tensor of rank /. Therefore we can use the well-
known angular momentum coupling rules if we apply the
spherical tensor gradient to a function F /" (r), i.e., to a func-
tion which also transforms under rotations like an irreduci-
ble spherical tensor. With the help of angular momentum
algebra, the result can be represented in terms of radial func-
tions, Clebsch—Gordan coefficients, and spherical harmon-
ics. The only quantities in this representation which depend
upon the special nature of the function £ (r) and are not
completely determined by the rules of angular momentum
coupling are the radial functions. Hence, one has to find
differential operators which when applied to the radial part
of F}I{r) yield the radial functions representing the product
(V) F 7 (r).

Different methods for the derivation of such differential
operators are discussed in this article. One method which
was introduced by Bayman® exploits the fact that the solid
harmonics ¢, /(r) have a particularly convenient form.
Therefore it is relatively easy to find a closed form represen-
tation for the special products .#}(V) F,. '(r). We showed
that the result of Bayman®’ can be simplified considerably if
the Clebsch—Gordan coefficients are replaced by Gaunt co-
efficients, because then some inconvenient numerical coeffi-
cients that occur in the differential operators can be ab-
sorbed in the Gaunt coefficients. The computation of the
Gaunt coefficients even for high angular momentum quan-
tum numbers poses no problems because a very fast and reli-
able program is available.'®

We also used Fourier transforms to derive alternative
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representations for the differential operators. Fourier trans-
formation has the advantage that it converts a differential
operator into a multiplicative operator which usually can be
handled much more easily. The differential operators which
were obtained with the help of Fourier transforms differ con-
siderably from the ones which were derived by direct differ-
entiation. Nevertheless, their equivalence could be proved
explicitly.

Closely related to the spherical tensor gradient is the so-
called spherical delta function & ;. In this article, convolu-
tion integrals with the spherical delta function were studied.
We derived representations of the spherical delta functions
in terms of B functions which may be considered as general-
izations of the well-known fact that the Yukawa potential is
the Green'’s function of the modified Helmholtz equation.
With the help of these results, we could extend the definition
of the function B ', (@,x) to all neZ. Classically, a B function
is only defined if n + />0 holds. We are now able to identify
the B functions, for which n + / <0 holds, with derivatives
of the delta function, including the spherical delta function
6" as a special case.

We investigated the spherical tensor gradient and the
spherical delta function because we found that they are of
particular importance in multicenter problems. As we shall
show elsewhere the general results presented here can be
used profitably in connection with addition theorems and
multicenter integrals, which are of special importance in
quantum mechanics of molecules.
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A useful formula for evaluating commutators

G. M. Gallatin

Department of Physics, Fairfield University, Fairfield, Connecticut 06430
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We present the derivation of a useful formula for evaluating commutators of the form
[4,f(B)] and [ f(4),B], where the nested commutators [4,[4,[--[4 [4,B]]--]]] and
(({---{[4,B],B ]-],B ],B ] do not vanish in general. The use of this formula is illustrated by a simple

example.
PACS numbers: 02.30.Tb
I. INTRODUCTION

In many problems in modern physics, one is confronted
with evaluating commutators of the form [4, /(B )] and
[f{4),B] where 4,B are operators with some or all of their
nested commutators, [4,[--\[4,[4,B ]]--]] and
[[--[[4,B],B )---],B ] nonvanishing, and f(B)and f(4 ) are
functions of the operators A and B. Below, we derive a gen-
eral formula for evaluating these types of commutators when
f(B)and f(A4 ) can be written as a power series.

It is quite likely that this result is known to many people
but the author has not seen it anywhere in the form presented
here. Of course, some special cases of it appear in the litera-
ture,’' e.g., for [4, exp B ] which is certainly useful but by no
means exhausts all the possibilities.

Before continuing, let me just state the result. For those
who already know it or those who just want the answer, they
need read no further.

o

A.SBN= 3 (05 ABI-{4.5]B}-18],
(1.1)

[f4)B]= % [4,[4-{4,[4,B]]-])3% f(4)),
n=1 .
where there are n nested commutators in the nth term. The
usefulness of this formula arises from the fact that ali the
dependence on B (4 ) is to the left (right) of the commutators.
A note for mathematical purists: In (1.1) we have taken
derivatives with respect to an operator. This is, in general, an
ill-defined operation, but since f (B ) can be written as a power
series in B, we need only define what we mean by d,: dp
B" = nB" ' Thus the only reason for using the notation d,
is that it reproduces the result we would get if B were a
number.
In Sec. II we present a derivation of (1.1), and in Sec. III
its use is illustrated by a simple example.

J

Il. DERIVATION

Since we will deal with any £ (B ) which can be written as
a power series in B

LS

fB)= Y a,B", 2.1)

n=90

we must first evaluate [4,B"]. The result, which is proven
below, is

[4,B"] = ZIOBC ) m(A,B)(nm), 2.2)

where () are the standard binomial coefficients

(;) = ',,,T(;'%—,;): (2.3)

and C,{4,B) is given by

C\(A4,B)=[4,B],
C,(A4,B)=[[4,B],B], (2.4)
C4,8)=[[-{l4,B],B]+].B]

That s, in C,(4,B ) there are / nested commutators. Usually,

we will write C; and omit the dependence on 4 and B.
We will prove (2.2) by induction. For n = 1, (2.2) gives

[4,B] = iOB'”Clm(nm) —C,=[4,B].

n=

Now suppose that (2.2) holds for an arbitrary n. We have
[4,8" '] = [4,B"]B + B"C,

n -1 n
= 2 Bmcnrm( )B+B"Cl’
m

m =0

but C;B=C,, , + BC,; thus

n—1 n n—1 n
A1) m BmtiC ( ) B"C
[A’B ] Z B n——m+1(m)+mzzo n—m m + 1

m=0

n—2 n n - .
S (L Y e

m=0

n—2 1 “fn+ 1
= n+1+ z (n+ )Bm+1cn~«m +(n+1)-BnC1': Z( m )B Cn+]/~m'

m+ 1

m=0
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Thus it holds for n + 1, and we have proven (2.2).
Below, we will need the form for arbitrary derivatives of
f(B). From (2.1), this is easily seen to be

1 - m! i
2, /8)= 3 a, TR (2.5)

We now have, combining (2.1) and (2.2),

w n—1

sBn=3 "3 an7c, (%)

n=1m=0
but

w n—1 o0

S M,=3 3

n=1m=0 m=0n=m+1

therefore

M, (2.6}

0 ©

4,rE81=3 3

m=0n=m+41

a,B"C,_,, (n )
m

Replacing m with n — m gives

(4./8)= 3 3 aB8""C, ()

o

=2

1
35 f(B))—Cp,
m=1 m!
which is (1.1).
In the same manner, we arrive at

[F(ALB] = 3 ColdB)—-31714),

where i
Cm (A’B) = [A:[A’['"[A’[A’B ]]'"]]]'

0. EXAMPLE

We will consider the case where f(B) = exp B, then
dy f(B)=f(B), and we have

= C,
[A,expB ] =exp B s (3.1)
m =1 .

Consider
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efde " P=A+eP[4de*]

= C,l4, — B)
=A+e3(e*8 L————)
~ mzzl m’
« C,(4,B)
=A+ —_——
m§=:x m!

which is the standard result.'

Now let us show that A4,,” = (¢”),*, where A, is the
Lorentz transformation generated by exp((i/2)M,,, b#”), an
element of the Poincare group with b,, = — b,,,. Consider
the standard result.”

(i/2M,,, b — (/UM 6% g
e wo Poe ‘ =A,Pg.

Taking P, = 4 and M, b** /2 = B, we have, using (1.1) or
(3.1),

(/2M,b = p

— (/M b+
a e “

e
+ Z m' Cm (Pa¥M#vb )7

=P

a
m=1

but

[P.. M, b*/2] =ib,"Pg,
and thus

Cn (Po, M, b)) = (i)7(b ™), Py,
where

(b™)of =b,"b, b, b, b, F
with repeated indices summed. Thus

M, bHY
/Mt p

e AMAT _ (o) 8P, (3.2)

and we have A,V = (¢®),,~.

'C. Itzykson and J. B. Zuber, Quantum Field Theory McGraw-Hill, New
York, 1980}, p. 70.

*L. Fonda and G. C. Ghirardi, Symmetry Principles in Quantum Physics
{Marcel Dekker, New York, 1970), p. 276.
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Dirac tensor distributions for moving submanifolds of 7"
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This paper considers nonclassical fields {tensor distributions) of the form 76;,, where &;; is the
Dirac delta function for a moving p-dimensional submanifold of R " (0< p<#n). The density 7 is a
classical (smooth), rank-k tensor fieldon R " * '. The main result of the paper is the development of
formulas for the distributional derivatives of such fields. The derivatives considered are the
absolute differential (Levi-Civita connection), the covariant derivative along a given vector field,
the divergence operator, the exterior differential, and the exterior codifferential. The resulting
derived fields are shown to reflect the underlying geometry of the submanifold {2 as well as the
nature of its motion. In the special case p = n, it is seen that the jump conditions on fields at the
boundary of the region (2 arise naturally from the distributional calculus.

PACS numbers: 02.40.Vh, 02.30.Sa

I. INTRODUCTION

In a recent paper' it was shown how distribution theory
(generalized functions) may be used to treat the topic of jump
conditions on fields with either jump discontinuities or &-
function singularities on a moving surface. This topic was
previously discussed in a paper of Costen,” which showed
the applicability of this topic to certain aspects of electro-
magnetic field theory. Because there are numerous circum-
stances where fields occur with singularities on moving
points, curves, or solid bodies (as, for instance, in the charge
and current fields which occur as sources in the Maxwell
equations?), it seems desirable to extend the treatment to
submanifolds of all dimensions. At the same time it proves
beneficial, for applications and geometric insight, to enlarge
the dimension of the space in which the submanifolds move.
The paper® of Estrada and Kanwal uses distributional meth-
ods to study the case of a hypersurface moving in #-dimen-
sional space. Thus, I would like to extend herein their treat-
ment to submanifolds of all dimensions and also to broaden
their distributional calculus to include the standard differen-
tial operators from differential geometry.

The subject of this paper then is the study of Dirac ten-
sor distributions 78;,, where (2 is a moving p-dimensional
submanifold of R " (0< p<#n)and 7is arank-k, smooth tensor
field on R "~ '. In the case where 7 is antisymmetric (a differ-
ential form), 78y, is known as a current (after de Rham). The
definition and discussion of these distributions is given in
Sec. II. The distributional derivatives considered are: the
absolute differential V, the covariant derivative V, along a
vector field X, the divergence operator div, the exterior dif-
ferential d, and the exterior codifferential d '. The calculation
of the action of these operators D on 78 is accomplished in a
coordinate-free manner by using Theorem 1 from Sec. III
and the transport theorem (from continuum mechanics). Itis
shown in Sec. IV that D applied to 78;, gives a nonclassical
field of the form

q
D(r8p) = A8y + Bbp + 3 CiV, (185 (1)

i=1

Here df2 denotes the boundary of £2 and v, ..., v, are unit
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vector fields which are mutually orthogonal and normal to (2
at each point during the motion. The tensor densities 4, B,
C,, ..., C, are intimately connected with the geometry and
motion of £2. As a corollary it is also shown in Sec. IV that if
is a classical tensor field which is smooth except at the points
on a moving (n — 1)-dimensional submanifold £2 of R " (hy-
persurface), then

D {7} ={Dr} +{[7]1OVI6s-

Here {7{ denotes the distribution determined by 7, vis a
vector field normal to 2, [7] = 7, — 7_ is the jump in 7
across {2 in the direction v and the product () depends on the
particular operator D chosen. Comments on the nature of
the decomposition shown in Eq. (1) are presented in Sec. V.
Examples and applications of this work to field theory
are numerous and extensive, some of which, in the limited
form available at the time, were presented in the papers pre-
viously cited."** In a sequel® to this paper, I have presented
applications of the distributional calculus for Dirac tensor
distributions as developed here in its general form.

Il. DEFINITIONS AND NOTATION

This section serves to outline some of the concepts and
definitions which are needed in this paper. Unexplained con-
cepts may be found in standard references on differential
geometry and distribution theory.®

(1) Submanifolds: In the n-dimensional space R " a p-
dimensional submanifold 2 and its ( p — 1}-dimensional
boundary df2 are considered to be smooth and to be parame-
trized by maps a:U —2 and A:[—-312, where UC R” and
ICR” ' are the parameter domains (more general situa-
tions can be reduced to this by using coordinate neighbor-
hoods). It is assumed that, with « given, the boundary para-
metrization A is coherently oriented with a.” One has that

da/du,, ..., da/du, are vector fields along £2 which form a
basis for the tangent space at each point. Let ¢ = n — p and
letv,, ..., v, be unit vector fields along {2 which at each point

are normal to £2, mutually orthogonal to each other, and
such that det(da/du,, ..., da/du,, v,,..., v,) > 0. This last
expression denotes the determinant of the » X n matrix
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formed by using the indicated vectors as columns. The
outward directed normal to 92 is the unit vector field v
along and d12 such that det(dA /35, ..., dA /35, _ |, v, vy, ...,
v4)> 0 on d12. (The choice of terminology here is just for
convenience of reference.) By a standard partition of unity
argument one can extend v, ..., v, and v to vector fields on
all of R ". Figures 1 and 2 illustrate these concepts for sub-
manifolds of R °.
(2) Content forms: With regard to the choice of frame v,

.» v, in the normal bundle, the content form for {2 is defined

to be the differential p-form

w=1i.1, -ui‘,q(ﬂ').

Here i, denotes the interior product operator (contraction
with v,,, and sometimes denoted by v,, 1) and 7 is a content

form (volume form) for R . In a similar fashion the content
form for df2 is taken to be

do =111

v S,

ol q(7r).

The integration of w over {2 gives the content or measure of
(when it is finite):

Jyo= L= L

The last equation is the change of variables formula and
a*(w) is the pullback of w by means of @, which in this case
works out to be

*((u)—det(aa ceey da ,v,...vq)
du, du

Xdu' Adu* A Ndu?.

(3) The mean curvature normal: This is the normal vec-
tor field u along {2 which is given by

1 49
- m vm 4
JZ . MZ Iz

where 1, = — (div(v,,,) + Z¢_ | [v,,, v, ]-V;). The bracket
[,] is the Lie bracket and the dot is the dot product arising
from the metric g. One can think of ¢, as the mean curvature
of £2 relative to v, and, in the case where p = n — 1 and

g =1, u,/p gives the usual mean curvature for a hypersur-
face in R". Another interesting case is where p = 1 and
qg=n—1,sothat2isacurvein R". Let / be a unit tangent
vector to {2 and suppose that /, v, v,, ..., v, is the distin-
guished Frenet frame along 2. Then one can show that

M=KV,

where «, is the first curvature of £2. One also sees that when

o,
V3 -
1/1
I< "
¢
55, FIG. 1. Normal bundle frames { v, } fora
Yy moving point and moving curve.
3t Ct v
p=0 p=1
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o™

FIG. 2. Normal bundle frames
{v.} for amoving surface and mov-

— ing solid body.
M

p=2 p=3

{2 is a point ( p = 0), then u = O (by choosing the v,’s to be
constant) and that when {2 is n-dimensional, z = 0 by con-
vention.

(4) Kinematics: A motion of the submanifold £2in R " is
modeled by means of the flow ¢, generated by a vector field
Von R " (Vis thought of as a velocity vector field). One
considers £2,={¢,(x)|xc 2 | = 4,(2) as the submanifold
into which f2 has deformed over the time interval 7. Similar
comments hold for 412, = ¢,(92 ). Parameterizations for {2
and df2 are given by a,=¢,%a and A,=¢, 4. One assumes
also that the extension of the normal fields v, ..., v,, valong
{2 and df2 to all of R ", as mentioned in (1) above, has been
donesothatv,, ..., v, restricted to {2, is an orthonormal basis
for the normal bundle to {2, and that v restricted to 412 is the
outward directed normal.

(5) Tensor distributions: The tube in R " * ' swept out by
the submanifold £2 moving in R " is 2 = {(d, (x), )|xe 12,
te R '}, and the Dirac delta distribution for 2 is defined by

<83 1) =L¢w=L(L¢w)d{
= [ ([ vetirrazien) ar,

where 1 is a scalar field on R " * ! with compact support. If 7
is a rank-k tensor field on R " * ', then 78, is the rank-k
tensor distribution defined by

(785|0) = (6517-6).

Here @ is a rank-k tensor field on R " * ' with compact sup-
port.® The dot product above is defined more generally as
follows: If o is of rank k + m, than (7.0} is the rank-m tensor
field with components given by

(70);.., = zTi.u-ikailmikjlmjm'

iy

{(The product in the other order, o-7, is defined in a similar
but distinct fashion.) This, of course, relies on the metric
which one uses on R " * ', The results to be derived require a
flat metric, and so I will assume that g = 7% ' g, dx' @ dx’
(Cartesian coordinates) withg; = + 1 for each /. The metric
onR"istakentobeg =37_, g, dx'®@dx".

(6) Distributional derivatives: The extension of the dif-
ferential operators from acting on classical fields to acting on
distributions is achieved by means of duality and is designed
to yield the customary results when restricted back to classi-
cal fields. If T 'is a tensor distribution (or current, where
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appropriate), one defines
(VT|9) = —(T|divi8)),
(div(T')[6) = — (T |V8),
(VyT|0)=(VT|Xe8),
dT|8) =(T1d'8),
(d'T\@)=(Td8).
Here 8 is a tensor field or differential form of appropriate
rank and with compact support.

If @is a vector fieldon R " * !, one can decompose it into
spatial and time components:

6=20 +8" e, |,

where 6 = 37_ 8, (Cartesian coordinates). Then if Tis a
scalar distribution on R " *', the spatial gradient of 7'is de-
fined by

— (¥T'16) = (T|div(8))
Of special concern to the results of the paper are distri-
butions of the form C;-V_ ()8, where C; is a rank-k tensor

fieldon R " * ' and v, is a normal vector field as mentioned in
(1) above. The definition of such a distribution is

(¥, (18210 = (84]C.V, (6)).

Il. THE TIME DERIVATIVE AND SPATIAL GRADIENT OF
85

In this section the calculations of (5 )/dt and V(§5)
are presented. These results, while being special cases of the
results presented in the next section, are derived here and
used to prove the results there.

The first theorem allows me to derive all of the results in
a coordinate-free manner which, I feel, is an improvement
over previous methods. The theorem essentially gives (when
1y = 1) a calculation of the Lie derivative of the various con-
tent forms. Since in general L, = i,d + di,,, the Lie deriva-
tive of the content form 7 for R " is easy to calculate:

Lywm=di,m=div({V)r.

Using Stokes’ theorem, this gives the well-known divergence
theorem

fL,ﬂT = J (V) O,
0 an

where £2 is an n-dimensional submanifold of R ”. A general-
ization of this is the following:

Theorem 1: Suppose that £2 is a p-dimensional submani-
fold of R ” with mean curvature normal i, with content form
=1, i, (17') and with content form do = i,i, -, (7) for
the boundary 40. If Vis any vector field and ¢ any scalar
field on R ", then

J;ILV(I/’OJ) = L”( Vo do — fp( Vu)o
+¥

i=1 !1

(Vv )V, Yo

Proof: The Lie derivative is expressible in the form
L, =di, + i,d. Using this, the product rule for the exterior
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derivative d, and Stokes’ theorem, one gets

| 2ot - j [di (o] + i, ()]

Vi, +j¢z,,da) +f | (dY A w)

an (¢4

=A+B+C

The rest of the proof consists of showing that the three terms
A, B, C coincide with the three corresponding terms in Eq.
(2).

(4 ) With regard to the parametrization A of 32 the dif-
ferential form ¢/, pulls back to

A*iyw) = det( A 94 ,Vivy, o vq)
ds, 8s,, 1
X ds' ds? - ds? !
Expressing V in terms of the natural basis
dA dA
V=a,— +-+a
'3, Yos,

P
+ov o 4 Fe,v,,
the above determinant 1s seen to reduce to

bdt(‘” s
0s, Os,

s Vs Vi ey vq) = bA *(dw).

But b = V-v and so one sees that
A*[iyw] =2 * (VY do],
which shows that the term A4 coincides with the first term in
Eq. (2).
(B) To see that the term B coincides with the second
term in Eq. (2), one takes the differential form
ivdw=1,d1i, el T
and simply commutes the operator d past i, -, . Itis con-
ceptually simpler to do this in two stages. First by viewing
the identity di, + i,4 = L, as a commutation relation and
using the fact that drr = 0, one arrives at

do= 3 (-

m =1

)= 1"\'. "'Lv,,, "'i\-q”v

whereinthe mthterm L, replacesi, intheproducti, -/,
Next, looking at the mth term of i, dw, one can commute L,
pasti, - - by using the commutation relation

L,i, —i,L, =1, Ifoneusesthefacts that L, 7 = div{a)m
and that i i, 7 = — i,i,, then one arrives at the identity

q
ivdo = Y diviv,, )i, wiyd, 7
|

(3)

g -1

£y S

m_lx7m+1

.IV".I[\‘",,\‘\ ]...1"477'

The notation here is that, in the mth term of the first summa-
tion, i, replaces {, in the producti, ---z",q and, in the m, s
term in the double summation, /, replaces/, and I~
replaces /, in the product i, -, . Finally, one needs to
evaluate the restriction of i, dw to the submanifold 2. For
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this, suppose that in the natural basis

VZ—+2,

i=1 =1

P
[Viovs ] = Zb - 4 EA'
i=1 ,' =1

Then, of course,
N, =Vwv, amd 4, =]

Evaluating the individual terms in Eq. (3) gives

Vo sVs | Vi

a*(iv‘ ...iV...i ., 77')
— de t("" L
du, du,
da  Ga
du,  du

P

vq) du' - du?

=N, det( s Vi Vs o Vq) du' - duf

=N, a*w),
where i, and V occur in the mth positions. Also,
a*(iv. ...I'V...j[v - ]...ivqﬂ)
_ det(aa L9
du, du
xXdu' - duf
=[N,4,, —NA, |a*w)

In the above expression 7, occurs in the mth position, and
I[y,.v,] OCCUTS in the sth position. Using these calculations,
one gets that

V, ‘s [Vm’vs] Ehat Vq)

14

a*(iydw) = a*( i N, div(v,,)

m=1
9 q9
+ 33 W -Nano)
m=1s=m+1
= —pa*((V-uo).
The last equation follows from the definition of the mean

curvature normal and the fact that the double summation
above reduces to

(C) In the expression
iy(dy No) =i, dy A, i, 7,
one can commute d/ past £, I,
dyNiyo = (Vo —i,(dY o)
which holds for any differential form o. One then arrives at

S (V. ¥,

m=1

where in the mth term i, replaces i,

by using the identity

[V(dw/\a)) = '"iV"'ivqﬂ-’

in the product i, -,

Using now an argument similar to that for part (B ), one sees
that

a*(ivlag o)) =a*(| 3 7.0 o)

which is what was to be shown.
Theorem 1 and its proof contain many results which are
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of importance in their own right. For the purpose of this
paper, however, Theorem 1 together with the following
theorem are instrumental in the calculation of d/9¢(r6)
and V(r&n) The following theorem arises in kinematics and
the proof of it together with other applications may be found
in a recent paper.’

Theorem 2 (transport theorem): Suppose that ¢, is the
flow generated by a vector field ¥ 'on R . If ¢ is a scalar field
on R" "', w a differential p-form on R ", and 2 a p-dimen-
sional submanifold of R ", then

d J [ 1
— = — L
dt ¢,1m¢w s L Ot o+ Lyo)|.

While in general the transport theorem applies to any p-form
o, I want now to apply it to the case where w is a content
form for £2. One can easily see then how the last two theo-
rems combine to give:

Theorem 3: The Dirac delta distribution 65 for a mov-
ing p-dimensional submanifold £2 of R " has time derivative
given by

a
> (6n) = Nbsp — pMbn + YNV, (162
Here

N=Vwv, M=Vu, andN,=Vv,

are the velocities in the various normal directions.

Progf: Suppose that ¥ is a scalar field on R " * ! with
compact support. Then, using the definitions and the trans-
port theorem, one gets that

(ol o2~ (2o
(e
+ [ | £otwe] ac

Now the first term in this last equation is zero since it is equal
to

. *d J )
— 1 dt
‘i’n: —s d ( l/}w

- - th Yosho — n(“«ﬁ(-,—s)w]. @)

S0

But since ¥ has compact support, there is an 7> 0 such that
ix,s) = O for every xeR " and every s with |s| > r, and conse-
quently both the integrals in (4) are zero for s large. With this
established, the result of the theorem follows directly from
Theorem 1 and the arbitrariness of ¥.

Theorem 4: The Dirac delta function §; has spatial gra-
dient given by

V(da) = — v +pubp — 2V, (16

Proof: Suppose fisa vector fieldon R " * ! with compact
support and with no time component (6 = ). Then from the
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definition ofTV’one has
(V62)16) = — (85 div(0))

_ _LU” div(e)w] d. (5)

Next note that
div(f o = div(0 )i, ---l'vq7T

=1, ---ivq(div 0 )

= iv‘ "'iquaﬁ

q
= LHIV( ...1"‘1»,7' —+ z]lx" "'l[vwﬂ ]'"lvqﬂ.‘
5=

This last equation is easily derived by commuting L, back-
ward past i, i, . Now the integral of the first term over £2,
can be computed using Theorem 1 with ) = 1 and ¥V = 6.
One gets

Liw=| (6+v)dw— | pllulw. (6)
2, an, f7

t

The integral of the other terms is computed as follows:
a;!‘(iv, '"i[vy .0 ]'"ivqﬂ.)
da, da,
= det(_f_l._ RN __(z_._ R vl, sy [VS’B ], ven VQ) dul ver duP
du, du,
=af((v,-V, 0)w). (7)

The last equation arises by expressing [v,,8 ] in the natural
basis:
da
v ] =Ya, — + b,v,,

[ ] 2.“ du; z,:
using this in the second step, and noting that

bss = vs'[vs56 ] = v.s.vv\,e - VSAVBVS

=v,-V, 8 (since v, is a unit vector field).

Integrating (7) over U now gives
[ wv.00. ®
nl

Thus the integral of div(@) in (5) reduces to

J [ (6-v) O + j (p wo — Zv,v-V‘,lB)w] d,
rlJan, 0, 7

and this proves the theorem.

IV. THE DERIVATIVES V, div, d, ¢, AND V , OF DIRAC
TENSOR DISTRIBUTIONS

In this section the various distributional derivatives of
T8, are calculated. The formulas involve a natural extension
of the normal vector fields v, -, v, v,andu connected with
the moving submanifold £2. In general, if § is a vector field on
R "+ with no time components, £, , ; = 0 (Cartesian co-
ordinates), then extend £ to a vector field £ by taking the
covariant components of £ to be

_éi =§i’ [ = 1,...,71,

Ens1= — VE.
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The following theorem and its corollaries are the main
results of the paper. It should be noted that in the special case
when 7 is a scalar field the various products: ®, A, and - are
Just scalar multiplication.

Theorem 5: If 7 is a smooth tensor field on R " * !, then

Virdp) = [(VT — Z{/,- ® V‘,’T> +pt® 7]5;)

~ (7871 — 37 87V, (180, i

lj

div(ré5) = [(div(r) — ZOE'V“,T) +pﬂ-'r}(5;,

- ({/‘7)5(7!)

— S #7416 (10)

i

If in addition 7 is a differential form, then

d{rép)= [(dr -39, /\v,,,r) + pit /\7}5,,

— (AT — SH AN, (8, (1)

and the exterior codifferential 4’ is equal to — div on such
currents.

Proof. Suppose that the rank of r is k. To derive Eq. (9),
let 6 be a rank-(k + 1) tensor field with compact support.
Then

(V(783)10) = — {765 |div(6))
= —(8p|7-divi@))
= — (6 |div(f-1) — (V7)-0)
= — (8pdiv(6-7)) + ((V7)5,10).

The first term is computed using Theorems 3 and 4 as fol-
lows {for notational convenience the {# 4 1)th contravariant
component of 6.7 is denoted by (9-7) 9):

— — a
— (V8,67 + (— 5
dt

0-+7)

—

= (80| — v{@-7) + N(O-7")

+ (65| p p{6-7) — pM (6-7)°)

— {8, ¥V, (0] — NV, (671,

Several tensor product identities can now be used to put the
above expressions in the form stated in Eq. (9). For example,

y-{67) — N (6-7)° = +(67) = (v © 76
and
VY. {87) — NV ((6-7)) = 7-V(6-7)
=(veV, 710+ ver)V. 0

Next, to derive Eq. (10) for the divergence operator,
suppose that § is a rank-{k — 1) tensor field with compact
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support. Then
(div(183)|0) = — (165 |V0)
= — <5ﬁ [TV@ )
= {85 |div(7)-0 — div(r-8))
= (div()65 10 ) + (V5|70 ).
But, calculating V&, from the result already proved [Eq. (9)
with 7 = 1], one gets that the second term in the last equation
is
(6a | ppaird)) — (38 [v(r-8))
— 363199, (78)),

and these terms can be expressed in suitable form by using
the identities:

(18 = (i-7)-6,
WY, (18) = (#1)V,.0 + (#V, 76 .

Finally, if one assumes that 7 is a differential form, then
Eq. (11) for the exterior derivative follows easily from Eq. (9)
for the absolute differential. The reason for this is that
d' = — div on the differential forms. Thus, if @isa (k + 1)-
form with compact support, then

(d(162)|0) = (78p1d'0)
= — (785|div(0)) = (V(r85)|0).

Substituting the expression for V(rd;) from Eq. (9) into this
last equation, one arrives at the desired results after applying
the following identities (some of which require that the con-
nection be flat):

(V7)-8 = (d7)-0,
wer)d=[TAT7)6,
veV,7)60=([VAV.7)0,
Vo)V (0)= VATV, {0)
One should also note that V 6 is antisymmetric.
The last assertion about the operator d ' is easy to see:
(d'(183)|0 ) = (765 |dE )
= (5217d0) = (84 |7-¥6)
=(18,|V0) = — (div(r53)|0 ).
Corollary 1. The covariant derivative along a vector
field X on R "+ ' is given by

Vutrsn) = |V = 57,9, o 11] + ek )r o

— (X650 — D W X )TV, ()65.

Proof: The proof follows from Eq. (9) and some tensor
identities.

As special cases of the corollary one can take 7 = 1 and
X a constant unit vector field either (1) in the time direction
to get the result in Theorem 3 or (2) in the jth spatial direc-
tion to get the jth component of the vector expression in
Theorem 4.

Another corollary to the last theorem is what amounts
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to a special case of it. Suppose that £2 had dimension » — 1
and that v, is a normal vector field along {2 chosen as men-
tioned in Sec. II. Suppose that 7 is a rank m tensor field on
R "* ' with components 7, ; that are smooth functions on

el

R"+'/0). Assume that the limits
(Tivi,), (1) = 1"’% Tii, (X £ €V(x),1)

exist for each zand each pointxon £2,, andlet[r] =7, — 7_
be the jump in 7 across (2. Furthermore, let {7} denote the
distribution determined by 7 and V7, div(7), d7, and V, 7
denote the functions obtained by differentiating 7 where it is
smooth (off £2 ) and assigning arbitrary values on {2. Then one
gets the following:

Corollary 2: With the proper choice of content form 7
on R ", the distributional derivatives of a tensor field 7 which
is smooth except across a moving hypersurface (2 are'”

Vir} ={Vri + v,®[7]5;

div{r} = {div(r)} + v;-[7]65

Vilr} = {Vxr} + (7,:X)7]85.

Furthermore, if 7 is a differential form then

di{r} ={dr} + A [7]65

d'{r} ={d'7} —v,[7]6p.

Proof: 1 will assume that the hypersurfaces 2, are rea-
sonable ones, namely that, for each ¢, R " is the union of two
n-dimensional submanifolds M , (z) with common bound-
ary which contains £2,. The labeling can be done so that v,
points into the region M _ (). Now 7 is the content form for
M , (t), and I will assume that it is chosen so that when
JM , (¢) is coherently oriented with M _ (t) the outward
normalv, toM _ (f)issuchthatv, = —v andv_=v,.
Nextlet M , be the tube sweptoutinR”*'by M _ (). One
can construct two smooth tensor fields 7, onR"* ' so that
T, =7onM, /2 and T, =7 on{2 (cf theschematic
Fig. 3). From this, one gets that

{7} =T, 65 +T 55
and {approximately)

Sair, =8om =65.

Applying Theorem 5to T, 85 and noting that in each
case u* = 0 and ¥/ = 0 (by convention) one arrives at

Vir} ==VT+(S,;,* + VT 6
—v,®T 855 —Vv_o®T 6,
={Vr} +v,0[7]85.

The assertions about the other differential operators are thus
seen to follow in a similar fashion.

FIG. 3. Schematic extensions (dot-
ted lines) of a tensor field {solid line]
with jump discontinuity across the
hypersurface £2,.

MU Qp MU
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V. CONCLUSION

In conclusion I would like to include a few comments
concerning the derived expressions. These are directed to-
ward questions as to the form and geometrical significance of
these expressions.

If D stands for one of the differential operators V, V,
div,d,d’, then the results of the last section gives that D (755)
may be expressed in the form

D(r85) = A6, + Béy + ZC,-~V‘,,(~)6;). (12)

There are other forms in which this result may be expressed,
but the advantage of the form above is that it is a disjoint
decomposition in the sense that if

D(rép) =465 + B'6p + 3 CI'V, (1a,

thend =A4'ond2andB=B',C,=C{,..,.C, =C onf2.
Thus, in particular, the equation D (76 ) = 0 allows one to
equate the coefficients in (12) to zero.

To comment further on the nature of expression (12), 1
will only consider the operator D = V,, which has the famil-
iar geometric interpretation of being the partial derivative in
the X direction (on classical fields). Then since

(Vx(6a)l¥) = — (65 |div(X)),
one could write that

Vxlbp)= —div[(-X ]65.
However, this fails to capture the underlying geometric sig-
nificance of this derivative of the delta function. For the sake
of example, consider the cases of a solid body M , asurface §,

a curve C, and a point @ all moving in R * as shown in Figs. 1
and 2. The formulas from the last section give in these cases:

Velbul = — X 5uss (13)
Vyilbz)= — (X )85 +2H (V- X )0z — (f/]-X)V,,l ()((‘);_z,)
Vi(bz) = — (#X )56 + k(v X )b

- S EAI, e, (15)
Vb= — 35XV, (8, (16)

i=1

Here the freedom in the choice of the normal vector fields v,
has been exploited to obtain simpler formulas. For M thereis
no choice to make. For S the normal field v, is determined up
to a sign but the mean curvature normal ¢ = Hv,, where H is
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the mean curvature, is the same regardless of the choice of v,.
For the curve C with unit tangent vector / one can always
choose v, and v, so that /, v,, v, is the distinguished Frenet
frame along C. Then v, is the normal, v, the binormal, and
1 = kv, where k is the curvature function for C. In the case
of a moving point @ one can choose v,, v,, and v, to be any
constant unit vector fields on R * (which are mutually orthog-
onal and positively oriented) to obtain formula (16).

A particularly nice feature of these formulas is that the
normal derivatives in the direction X = — vyield Dirac del-
ta functions (a generalization of the well-known fact that the
derivative of Heaviside’s function is Dirac’s delta function):

Vx(O) = 541,
Vx(65) = s,
Vi(6z) = 8sz.

Thus one sees how the geometry of the submanifold, except
in the case of a point (which has no geometry), influences the
form of the derivative, and this to a greater extent the greater
the dimension of the submanifold.
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*In the notation established later in the paper p&z and J8; represent charge
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and p8, represents a particle which charge p moving in R *. This should be
contrasted with the Dirac delta function for a point x = (x,,7,) in space-
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Realization of Gaussian random fields
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The representation of stationary Gaussian processes in terms of filtered Gaussian white noise is
studied. Known resulits are extended from the finite-dimensional case to the dimension-free case;
hence, in particular, to Gaussian random fields. In particular, the following result is proved for
usual Gaussian processes: Physical realizability is equivalent to realizability.

PACS numbers: 02.50. + s

INTRODUCTION

In the present study, “process” means *“centered and
stationary Gaussian process.”

0.1. Markov realization

The operator of time derivation is denoted D. If X and K
are two locally convex Hausdorff spaces (.c.H.s.), L (X, K)
denotes the set of all linear and continuous maps: X—K. In
particular, End X = L (X, X') denotes the set of all endomor-
phisms of X. The transposition 4—47 maps L (X, K ) in
L(K', X'). The usual theory of Markov realization' is first
recalled. A process (g, ) on the line with values in R? is called
realized in dimension » if (g, ) is a linear observation of a
process & = (£,) with values in R", § satisfying the following
two conditions (a) and (b):

(a) 347 €End R" such that

DE—ATE=N, (0.1)

where NV denotes a Gaussian white noise.

{b) The stochastic process ¢ is physically realized by
filtering , i.e., there exists a causal filter
h"eL *R™*, End R") such that & = A7 «N.

If the covariance of & is invertible, this implies
hT(t) = exp, (t4") and 4" asymptotically stable, i.e., each
eigenvalue of 47 has a negative real part. Therefore,

AB'eL R", R?), (g)=B"(,) (0.2)

and the spectral densities S, of the realizable processes can
be characterized: S, is rational in the scalar case p = 1, and
of rational type (4.1) for p > 1. The realization of processes
with a given spectral density of this type has been studied
extensively.

Realizable processes are important, since they have ex-
tended the domain of applicability of Kolmogoroff’s and
Ito’s techniques from differential systems driven by Gaus-
sian white noises to differential systems driven by Gaussian
realizable processes (g,} and with independent white noises
dW /dt. The idea is to replace a stochastic differential equa-
tion

dn, =b(t,,,8)dt+alt,n,,8)dW, (0.3)

by the stochastic equation of Ito type satisfied by the process
(&,,m,), with valuesin R” ¢ R”:
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d6)=€EmB?Qm

(N, dt )
T \att, 7., B7E)aW,)

Physically, this means that for differential equations
with colored input arising in nonlinear filtering, stochastic
control, random mechanics..., an auxiliary differential equa-
tion (0.1) and an appropriate observation map B” can be
built up in order that the colored input (g, } is well modelized

by (BT&,).

0.2. Problems concerning Markov realizations

This leads to several problems.

A. Problem of stability and of approximate realization

Practically, the process g arising in (0.3) is an approxi-
mation of a given physically realizable process g'. Is it possi-
ble to realize g'? Can the realization of g be considered as an
approximate realization of g'?

N.B: In usual realization methods, the probability space
used for the construction of the process (£,, 7, } depends on
S, - Hence, a probabilistic study concerning an infinite set of
spectral densities is difficult using this approach.

B. Problems concerning driving signals generated by
distributed parameter systems

Sometimes the driving signal (g, ) is a linear observation
of a distributed parameter system; and the equation govern-
ing the state (£, ) of this system is of the type (0.1), with R”
replaced by an appropriate functional space. What kind of
observed signals are obtained in this case? Since computers
work only with finite sets of numbers, how can the observed
signal (B” £,) be approximated by a signal possessing a finite-
dimensional realization?

C. Problems concerning driving signals, generated by
observation of random fields

Often, the driving signal (g, ) is an observation of a ran-
dom Gaussian field (c, . ), x belonging to some open subset [
of R?; c is statistically characterized by an experimental cor-
relation function. But, viewing c as a vector-valued process
(C,) with values in &'(I), (C,) is, in general, not governed by
an equation of the type (0.1). In order to construct realiza-
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tions and approximate realizations for (g, ), is it possible to
realize (C,)? The problem of realization of random fields is
also of interest in connection with partial differential equa-
tions (p.d.e) with random coefficients. Consider, for exam-
ple, a random field («, . ) on R X, a solution of the heat
equation

Du,, =c, . 4u,, + boundary conditions. (0.4)

The fields u and c are replaced by the corresponding
vectorial processes (U, ) and (C,). If (C,) is a linear observa-
tion of some auxiliary “Markov” process £, generated by a
Gaussian white noise, then (£, ; U,)is the solution of a vector-
ial Ito’s equation; hence, Kolmogoroff’s and Ito’s construc-
tive techniques can be applied.

For these reasons, an extension for arbitrary » and p of
the usual realization theory is needed. In the formulation
given below, only stationary-centered Gaussian processes
are considered, even if other applications are possible. In the
present case, techniques of functional analysis seem to be
more appropriate than usual techniques of probability the-
ory, since singular linear transforms of Gaussian measures
are used. Hence, triplets and cylindrical processes (c.p.) are
used: This means that, for any fixed time 7, the random vari-
able (r.v.} £, is identified with the corresponding linear pro-
cess (1.p.) x—(&,, x). This Lp. is defined on some space in
duality with the space where the probability distribution of
£, lives. For these reasons, transpositions A—A’, B—B" ...
are frequently used.

Section 1 gives the notations and introduces the concept
of c.p. (g,) physically realized by filtering a given Gaussian
white noise. The connection with the usual concept of reali-
zability is:

If the values of (g, } are linear processes on a finite-dimen-
sional vector space Y, up to an isonomy, (g, ) is physically
realizable for filtering some Gaussian white noise iff the
stochastic process with values in Y’ defined by (g, ) is phy-
sically realizable, in the usual meaning.

Section 2 gives a dimension-free extension of Doob’s
result characterizing the 47 €End R” such that 0.1(a) and
0.1({b) are true for some process (&, ). Evidently, an additional
hypothesis is needed for the infinitesimal generator, since
“unbounded operators” are introduced, and since the expo-
nential of such operators are not defined, in general. The
direct part of the characterization is.

0.3. Direct assertion: Necessary conditions for the
construction of £

Let X be the completion of a barreled space X, for the
scalar product (Cx, x), where C is symmetric, positive,
and injective €L (X,, X /). Let +—exp tF be a semigroup of
operatorsel (X;) = L (X;, X;).Let(§,)beacontinuousc.p.
on the line, with values 1.p.’s on X, such that

(i) V¢, the covariance of &, is C,

(ii) D& — FT £ is a Gaussian white noise &,

(i) & is physically realizable by filtering V.
Then, necessarily, the semigroup (exp ¢F') defines by con-
tinuous extension a semigroup of contractions t—exp 4
in X, satisfying the following condition:
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VxeX,

The assertion 2.3 shows that, conversely, for any Hil-
bertian data of this type, a corresponding continuous c.p. (£, )
satisfying (i), (iii), and

(ii') D& — A" £ is a Gaussian white noise N
can be constructed. In the particular case where dim X = »
is finite, this gives Doob’s characterization of 4: 4 is asymp-
totically stable, i.e., all eigenvalues of 4 satisfy Re A < 0. In
Sec. 2.5, the spectral density of any linear observation
(g,) = (B"&,) of the c.p. (&,) is computed; since the usual
expression of this density, in the finite-dimensional case, has,
in general, no meaning in the dimension-free case, another
expression is proposed [see (2.8)]. We also prove that the
realized c.p. (g, ) is necessarily physically realized by filtering
N; but the converse property is not evident. For example, in
the one-dimensional case, it was not known whether scalar
processes with spectral densities of the type exp( — |w]), or
(1 + )™ witha < — L ..., are realizable. The results of
Secs. 1-3 are combined to prove the following theorem:

llexp t4 x|y —0 ift—>o. (C)

0.4. Theorem of simultaneous realization

For any Gaussian white noise ¥, a c.p. (£ ), as previously
defined, can be constructed such that all c.p. physically
realized by filtering NV are realized by observing £.

Since no restriction on dimension is assumed, this
theorem gives a solution to the problems B and C (Sec. 0.2).
As an illustration, explicit realizations are given in Sec. 4 for
Gaussian random fields on R X R? with spectral measure

(14 @+ (E]Y)" (0.5)
witha< —(d+1)/2 and £=(&,---&,), d=0, 1....

Since all physically realizable processes generated by a
given white noise /N are realized simultaneously, the last
theorem gives a method of resolution for the problem A.
These results were announced in Compte-Rendus notes” and
Ref. 3.

1. PHYSICAL REALIZATION BY FILTERING A GIVEN
NOISE

If X and K are two real l.c.H.s., the space L (X, K ) is
endowed with the topology of uniform convergence on all
finite subsets of X. If, for example, X is the Hilbert space
L %(£2) of all second-order random variables (r.v.),

L (X, L *(#2))isthespaceofall continuoussecond-order linear
processes on X. Below we work only with centered

ReL (X, L*(f2)),i.e.,suchthatE ({R, x)} = OforallxeX.Such
processes will simply be called “linear processes.”

1.1. Covariance and stochastic Hilbert space

ForReL (X, L *(12 )),thecovarianceisthelinearoperator
C: XX’ such that

Vx, yeX, (nyﬁx'xx=E(<R,X><R,Y>)~ (1.1)

Then ker C = ker R. The canonical decomposition of
the linear map R is X—X /ker C—Im R L *(12). Introduc-
ing the closure of Im R in L *(£2 ) and the completion X, of X /
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ker C for the scalar product {x; y}—(Cx, y), the following
factorization of R is constructed:
I ~
X—X, > ImR +L?*2), (1.2)
where the central map is bijective and isometric. For this
reason, X, is called th stochastic Hilbert space of R, or of the
positive quadratic form {(Cx, x) on X.

1.2. Cylindrical processes

A cylindrical process (resp. a continuous c.p.) on the
line, with linear process values on some l.c.H.s. X is a map
(resp. a continuous map) (£, ): R—L (X, L *(£2)). The covar-
iance of (£, ) is the map C,: RXR—L (X weak, X ' weak) de-
fined in the following way for arbitrary ¢, u€R, x and yeX:

(Celt, upe, y) = E({(&,, ») (£, x)). (1.3)

Note that a c.p. is continuous iff the covariance is con-
tinuous.

A cylindrical process (£,) is called stationary if V4 real
(€.) is isonomic with the translated cylindrical process

(§t+h)t; then
Celt,u)=Ce(t —u); Ce(—1t)=C,(t)" andV:

the covariance of the linear process §, is C.(0). (1.4

1.3. Generalized cylindrical processes

A generalized c.p. (£, ) on the line, with linear processes
values on X is a linear and continuous map
D R)—L (X, L*2)).
It is convenient to write informally £, = § §, @ (¢) dt,
even for a generalized c.p., which is not defined in the follow-
ing way by a continuous c.p. (&, ):

VpeZ(R) VxeX,
(£,,x) = ng(t)(é’,,x) dt. (1.5)

Inthe same way, the covariance C, : Z (R)*—L (X weak,
X' weak) is defined mathematically in the following way, for
arbitrary @, Y Z(R), x and yeX,

(Cel, ¥hx, p) = E((&,, ») (&4, X)) (1.6)
But it is convenient to write informally
Celpr )= [ [ C.le g ¢ ota) e d, (1.7

and also C (¢, u) = C(r — u) if (£, ) is stationary.

1.4. Gaussian white noise

Let X be an l.c.H.s.; let X, be the stochastic Hilbert
space of {(Qx, x), where Q is positive and symmetric
€L (X, X'). The canonical injection of Z(R) in L *(R) is de-
noted j. Identifying isometrically L *(R, X, ) with a space of
Gaussian r.v., the corresponding white noise  is the gener-
alized c.p.: Z(R) ® X—L *(R, X)) defined by the composi-
tion of j ® /o with the canonical injection L ¥R) ® X,
—L *R, X,,). A computation gives the covariance of N:
Cx = §yft — 5)Q. We write informally N, =SNplt)d
Working only with stationary-centered Gaussian cylindrical
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processes, with continuous stationary-centered Gaussian
c.p., and with stationary-centered Gaussian generalized c.p.,
notations are simplified to “c.p.,” “continuous c.p.,” and
“generalized c.p..”

1.5. Extension of the usual concept of linear filter

In order to explain the connection between familiar lin-
ear filters and the definition of linear filters given below, we
first consider the particular case where X is a finite-dimen-
sional Euclidean space. A linear filter adapted to N is usually
defined as an element

RTeL ¥R, L (X", Y')), (1.8)

where Y’ is the dual of some Euclidean space Y. The filtered
process A7 *N takes values in Y’ and is given by

(hT*N), = f " b= u)'N, du. (1.9)

This process is defined by the following c.p. on the line
with linear process values on Y:

y—{(h"*N )7, y) = < fj: h(t—u)'N, du,y>-

Hence using the transpose (4 (¢)")" = h(t)eL (Y, X ) of
ht)",

((hT*N),, p) = (N, h(t —uly). (1.10)

The rhs denotes the Gaussian r.v. associated by N with
theelement u—# (t — uly of the stochastic Hilbert space of V.

The definitions (1.9) and (1.10) are not convenient in the
infinite-dimensional case for the following reasons:

eThespace L (X', Y')hasnocanonical Hilbertian struc-
ture.

o(1.8) and (1.9) are not well adapted to the covariance of
N.
Therefore, (1.10) is chosen in order to define linear filter if
dim X and dim Y are arbitrary.

1.6. Linear filters

If Y denotesal.c.H.s, an element AL (Y, L }(R, X)) is
called a filter defined on Y adapted to V. The image of ye Y by
this mapisdenoted ¢ —# (¢ )y. Filtering N with this filter gives
the c.p. g = A" *N such that

Vi, VyeY, (g,p)=N,(hit—u). (L.11)

The covariance of (g,) can be computed

(Coltl,y) = f Chlup, hit+uly )y du.  (1.12)
ueR

Hence using (1.6), (g, ) is necessarily a continuous c.p.
By the Plancherel theorem, VyeY, the Fourter transform
(FT)ofA (¢ )ybelongsto L (R, X o)and thiselementis denoted
H (w)y. The following convention is used for FT:

+ o
H(w)x = J h(t)xe " dt. (1.13)

Puttinghv(z W=h(—t), foryandy'fixedeY,thefunc-
tion (C, y, y') is the convolution, associated with the bilin-
ear map defined by the scalar product of X, of the vectorial
functionshy’and 4 y. Hence, # (C, y, y')eL '(R). Moreover
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for fixed ¢, (C, (t)y, y') is separately continuous with respect
to y and y'eY. The spectral measure of g is defined by

S, = (2m) "' ¥ C,: This is a distribution on the line, with
valuesin L (X, X ). For arbitrary yeY, (S, y, y) isanintegra-
ble function on the line, and for almost all real w,

(S, (@, ) = (|| H (0W]o) {1.14)
N.B.: S, is not a measure, but a ¥ -cylindrical measure.*

1.7. Causal filter

Afilter h €L (Y, L*(R, X,))is called causal if 4 __is the
product of some element heL (Y, L*R*, X)), with the ca-
nonical injection L (R ™, X, }—L *(R, X, ); sometimes we
simply write # = h__. In order to connect FT and Laplace
transform (LT),

p»—»J (h(t)x)e~*"dt, Rep>0, (1.15)
0

the FT is viewed as a function on the imaginary axis of the
complex plane p = u + iw. Hence, for any causal filter
heL (Y, L*R™*, X)) and peY, Hy belongs to the Hardy class

H*(Xy) = F(LR", X,)). (1.16)

Any element in this Hardy class can be viewed as the
boundary value of a holomorphic function on the right com-
plex plane Re p>0.

1.8. Physical realizability by filtering a given white
noise N

Let Nbe as before. A continuous c.p. (g, ) with values L.p.
onsome l.c.H.s. Yis called physically realized by filtering N,
{resp. physically realizable by filtering N ) if there exists a
causal filter heL (Y, L*(R™, X,)) such that g = h *N (resp.
such that g is isonomic with & ¥V ).

2. ANALYSIS OF THE CONSTRUCTION OF (£,)
2.1. Definition

First, the terminology used in the direct assertion (0.3)
1s detailed.

Linear maps Fand e(t ) = exp tFelL (X;) are given for all
>0 such that e(0) = Id(X;), e(t)e(t ') = e(t + ¢’) for all z and
t'>0, and

VxeX, h 'elh)—l)x —Fx—0 in X, if hIO.

The generalized c.p. D€ and the c.p. F” £ are respective-
ly defined by (D€ ), = — £p, and (F"&,, x) = (£,, Fx) for
arbitrary real t, xeX and g (R).

2.2. Proof of the direct assertion section 0.3

Since X, is barreled, X | weak is quasi-complete; hence
Ref. 5 shows that the canonical injection ;' of X, in X is
weakly continuous. Transposing;’, a triplet is built up: X=X
= X '+X/ such that the identity map Id X of X induces C.
The causal filter keL (X, L *(R, X)) generating (£, ) is intro-
duced:

Vi VxeX,, (&,x)=N,lk{t—upx).
Hence Vg2 (R),
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(o) =N.| [kt umiginrar |
UDE 1y x) = — {Enpr )
- [ fj: (k (t — upx)Dg (1) dt ]

Therefore, the relation Dé — F7 £ = N is equivalent to
the following equalities of distributions on R, with values in
X

(724
VxeX;, D(k(t)x)—k(t)Fx)=05,®{jox) (2.1)
Forarbitrary xeX, thedistribution (k { )x)dt vanishes for
t<0. It is easy to show that (k (¢ )x)dt is represented for all by
a continuous function R—X,,, Frechet-derivable on
10, + «[. Hence, for arbitrary fixed ¢, & {¢) is defined

EL (Xl ’ XQ )
We now prove
V>0, VxeX, kit)x=eft)x. (2.2)

In fact, the distributions represented by the functions
ko(t )x = jole . (t }x) vanish for f < 0, and satisfy the following
differential equations on the line:

D (ko(t )x) — kolt Fx) = 8 ® (o X).

Hence VxeX,, the difference [ (t )x = k (t )x — kit )xisa
continuous function R—X,,, vanishing for <0, solution of

Dl (t)x) - I(t)(Fx)=0.

The following lemma, well known for Banach spaces
valued and strongly derivable functions, will be used:
Let f(r ) be a Frechet-derivable map defined on 7 = 10, 1{,
with values in a barreled space X, and let g be a Frechet-
derivable map on I, with values in the weak space X /.
Thenk () = { f(t), glt)) isaderivable numerical function

and
Dh = (D fg) + { f, Dg).

In order to prove (2.2), we prove only
YyeX;, Vt,>0, (l{t)xjoy)=0. (2.3)
The following function defined for 0<z<¢,,

hit)=Cjolyh e lelt, — t)x}))
vanishes for z = 0, has a vanishing derivative for 0 <z <?,.
Hence 4 (¢,) = O; this proves (2.3) and (2.2). Therefore,
x—jq (e[t }x) is a causal filter; hence VxeX;,

J-m iolelt x)||* dr = Jm {elt) Qelt)x, x) dt < 0. 2.4)
Since C, (0) == C = Id(X ), Formula (1.16) gives

VxeX;, (x,x)= Jx (elu)" Qe(u)x, x) du. (2.5)

Therefore

(F+ F'ix,x) = f " (F Telw)"Qelu)
+ e(u)” Qe(u)F)x, x) du
= Jm d {e(u)"Qe(u)x, x)

1

= lim

o JO

= —(Qx,x) + lifn (e{t)TQe(t )x, x).
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In view of (2.4), the last limit vanishes. Hence,
Q= —-F—F" (2.6)

VxeX,, lim (Qe(t)x, et )x) = 0. 2.7)

The previous lemma shows that the function —||(exp ¢F )x||*
is derivable; since Q is positive,

(% )||(exp tF)x||> = {(F + FT)(exp tF)x, (exp tF }x) <O0.

Hence V¢ ||(exp ¢F x|*<||x]|*.

Hence exp ¢F defines by continuous extension a linear
contraction of X denoted exp tA. The semigroup property of
t—exp tA follows using a continuity argument from the se-
migroup property of +—e(t ). For any fixed xeX, the map
t —{exp ¢4 )x is the uniform limit of the sequence of contin-
uous functions ¢ —{exp tF)x,, if ||x, — x||—0. Hence
t —>exp tA is a continuous semigroup of contractions. More-
over, the domain of the infinitesimal generator 4 contains X;
and 4 = Fon X,. Finally, YxeX,,

D |left x| = 2(Fe(t Jx, eft ) = — (Qelt bx, et x).

Hence by integration and using (2.5),
I = — tim | d{lefupe]
—w Jo

= >~ tim e el

Hence ||(exp 24 }x||—0 for t— + oo for all x belonging
to the dense subspace X; of X. Since ||exp ¢4 ||<1, the condi-
tion (C) (Sec. 0.3) follows. This proves the direct assertion.

2.3. Converse assertion, concerning
the construction of £

Let t—exp ¢4 be a continuous semigroup of linear con-
tractions of a real Hilbert space X, satisfying the condi-
tion (C). Endowing Dom A4 with the graph norm, trans-
posing the canonical injection of Dom A4 in X and 4, we
obtain a triplet Dom 4<=«X=#({Dom 4 )’ and a bounded

operator A 1,: X—>(Dom 4 )’ extending the transpose

ext *

AT of the linear operator 4 of X. ThenQ = — 4 — A4,
: Dom A—(Dom A )’ is symmetric and positive
€L (Dom A, (Dom A4 )'). Endowing (Dom A4 ) with the
norm induced by X, the map x—yj,(exp ¢4 Jx: Dom 4
—L (R, X,)isanisometry whose continuous extension
isdenoted x—j, (exp 4 }x. Then for any Gaussian white
noise NV with covariance §,(f — )0, the restriction & of
& = {jplext 4 )}+N tothesubspace Dom 4 of X satisfies
the three conditions:

(i) V¢, the covariance of £, is Id (X},

(ii) DE — AT £ = N, where 47 £ is defined by

(ATE, x) = (&, Ax),

(iii) (£, ) is physically realized by filtering V.
Proof: For arbitrary xeDom A,

‘j—t flexp 24 )x||* = 2(A4 (exp 4 )x, (exp 14 )x)
= — (@ (exp t4 }x, (exp t4 }x). *
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Since 1—||(exp ¢4 )x||* decreases for small 1 — (Qx, x)
<0 for arbitrary xeDom 4. Hence Q is a positive symmetric
element of L (Dom 4,(Dom 4 )'). Now, by integration of * on
a finite time interval,

[ (Q(exp uA Jx, (exp ud Jx) du

= |lx|)* — Il(exp 24 Jx])*.
Using the condition (C), this gives for t—o0:

| et exp e el ae =

Hence the map x —j, (exp ¢4 )x is an isometry, hence
admits an isometric extension X—L *(R*, X, ). Hence this
extension, denoted abusively x-—j, (exp 74 )x, is a causal fil-
ter, defined on X, and adapted to any white noiseﬂN with
covariance 8y(t — 5)Q. Clearly the restiction £ of £

= jolexp t4 )*N, to the subspace Dom A4 of X, satisfies (i} and
(iti}. Hence we show only Dé — A7& = N.

Thenotationh (f )x = j, (exp, 4 )xisusedbelow VxeX.
For any xeDom 4, A (¢ )x is a distribution on the line, with
values in X, solution of
D(h(t)x)—A(h(t}x)=D(h(t)x) — h(t)Ax

=o(t) & (jpx)-

By translation, this gives for arbitrary fixed real u:

D,(h(t—ux)—h(t—udx=35,(t)®(jox).

Hence for arbitrary g Z (R), xeDom 4,

(DE), —(ATE), ) = { — Epyy X} — (€, Ax)
= [w., — [ e~ upea

_J¢;(t)dth (t— u)(AX>]

= (v, ([ 8ut000101 0t ) o)

= Nu(¢) (u) ®jQx) = <N¢’ X).
This proves (ii); hence the converse assertion is proved.

2.4 Application to finite-dimensional processes
In particular, Doob’s result can be deduced from the
direct and the converse assertion, using the following fact:
An n X n real matrix A4 is asymptotically stable iff there
exists an Euclidean structure X on R" such that r—exp 74
is a contraction semigroup in X, satisfying the condition
(C).
The condition is clearly sufficient. Conversely, if 4 is asymp-
totically stable, then

C= Jm e’ dt
(4]
is a symmetric positive regular n X n matrix satisfying AC
+ CAT = — 1. Therefore,
D({Ce" x, ¢4 'x))
((CAT+ AC)e" 'x, e 'x)
~ [ifexp 14 7)x]}?<O0.
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Hence V>0, (exp tA7) is a contraction in R" endowed
with the scalar product (Cx, y).

2.5. Expression of spectral densities

The notations of the converse assertion are used. Then for
arbitrary xeX, the function p—yj, (4 — p)~ 'x, holomor-
phic for Re p > 0, belongs to the Hardy class H *(X,,). If
w—jo (4 — iw — 0)~ 'x denotes the boundary value of this
function, the following equality holds in L '(R, dw):

(Sellx, x) = (|l jol4 — i — 0)~x]jo)*. (2.8)
Proof: (a) First we show
Re p>0and xeX
:>f ee Pxdt= —(4—p) 'x. (2.9)
0

In fact, if #( p) denotes the lhs of the last equality, #( p) is
the Laplace transform (LT)of (¢ ) = (exp 4 )x.Since#( p)isa
linear and continuous function of the argument xeX, ( p)
defines a linear and continuous operator of the complexifica-
tion X° of X. In particular, for xeDom(4 ), u(¢ ) is a solution of
the initial value problem

Dult)—Au(t)=0 for >0, u(0)=nx.

Henceby LT: @i p)(p —A)=x,0ort(p)=(p—A4) 'x
for xeDom A. Finally, (2.9) follows by continuous linear ex-
tension.

(b) The point (a) uses only the inclusion of the semiplane
Re p> 0 in the resolvent set Res 4 of A. The additional L 2
properties proved in 2.3 are used below. Let (x,,) be a se-
quence in Dom 4 converging to xeX and € > 0. Using (a),

J Joele™ e “xdt = —j,(4 —iw — € 'x.
0

Thenormof 4 (¢ )x — x,) = jolexptd)
X(x —x,)eL*R™, Xp)is ||x — x,,||. For any fixed € > 0, the
sequence of functions w—y, (4 — iw — €)™ 'x,, converges to
w—jold —iw —€)”'xin L*(R, X,).

Hence,

Ve>0, VxeX, fJQe’Ae —iwle —€lx dt

= —jold —iw—€)"'x.

This means that YxeX, the function p —jy(4 — p)~'x
belongs to the Hardy class H * (X, ). By Plancherel’s
Theorem, this function has a boundary value; this boundary
value denoted by j, (4 — iw — 0) " 'x is the FT of & (¢ )x.

{c) Since & is physically realized by filtering &V, using the
causal filter x —# (f )x defined on X, (2.8) follows from (1.14).

2.6. Comments concerning Formula (2.8)

(a) The scalar products of the complexified spaces X*
and X g, are denoted, respectively, (, }and (, ), . These com-
plexifications are viewed below as real vector spaces. By
complexification of (2.8),

VxeX©, (Silo)x, x)
= |ljold — iw — 0)~ x|/

= (4 — iw+0*)"'Q(4 —iw —0)"'x,x).  (2.10)
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(b) If Res 4 contains some open interval I of the imagi-
nary axis for arbitrary xeX, the function (S;x, x) restricted
to I is represented by (Fx, x), where F: I»L (X°) is contin-
uous and defined by F (@) = (4 — iw)* ~'Q (4 — iw)~ . In
particular, if as in the finite-dimensional case, Res 4 con-
tains the imaginary axis, then

Si @) = (4 — io)*'Q (4 — iw). (2.11)

3. THE REALIZABILITY THEOREM

In this section, the notations of 2.3 are systematically
used. In particular, £ denots any c.p. constructed as in 2.3.

3.1 Definition of realizability

{a) A linear observation of some c.p. f is defined by some
Bel (Y, X), where Y denotes a l.c.H.s. The result of this
observation is the c.p. BT £ defined as follows:

Vi, YyeY, (BTE,p)= (&, By).

(b) A c.p. ( g,), with values L.p. on some l.c.H.s. Yis called
realizable if ( g, ) is isonomic with some linear observation
B of some c.p. £. The number dim X is called the dimen-
sion of the realization (B, § )of (g,).
This agrees for dim X finite with the usual definition of
realizations.

3.2. The realizability theorem

For any stationary Gaussian c.p. ( g,) on the line, with
linear process values on some l.c.H.s. Y, the following as-
sertions are equivalent:

(a) g is realizable,

{b) g is physically realizable by filtering some Gaussian
white noise,

(c) there exists a real Hilbert space X, and H: y—H (o)),
element of L (Y, H *(X,,)) such that the following equali-
ties hold in L (R, dw):

VyeY, (Sy(ol,y) = (|H @plo)"

Proof: Two stationary continuous Gaussian c.p. on the
line, with values l.p. on the same l.c.H.s. ¥, are isonomic iff
they have identical spectral measures. Hence using (1.14),
(bj(c). )

(a)=>(b). Let ( g,) be a realizable c.p., and let (¢, B ) be
some realization of ( g,). Since £ is physically realized by
filtering some Gaussian white noise N with the causal filter
Xx—jolexp td )Jxon X, BT £is physically realized by filtering N
with the causal filter y,{exp t4 ) BeL (¥, L (R, Xo))

{(b)=>(a). Let X, be a Hilbert space, and let V be the
Gaussian white noise obtained by identifying isometrically
LR, X, )withaspace of Gaussianr.v. Letg = £ *Nbeac.p.
physically realizable by filtering N with heL (Y, X ) with
X,=L*RT, X, ). We have to find a realization (§, B ) of g.
The semigroup ¢( - }—>¢' = @ (¢ + - )ofleft translation in X,
is denoted ¢ —exp tA4. Since this contraction semigroup sat-
isfies the condition (C), f will be constructed using 2.3.

Since the domain of the infinitesimal generator 4 = d /
dtin X, is the Sobolev space H (R *, X,,), the dual space
(Dom A ) is® the space of all elements of H ~'(R, X,,) sup-
ported by [0, + oo[. The domain of A7 is the subspace of
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Dom 4, consisting of all elements vanishing at the origin,
and4” = —D.Hence @, = — 4 — A" =0!! But Q,#0
since YpeDom 4, Q,¢ = 849 (0). Hence, the stochastic Hil-
bert space of the quadratic form (Q,@, ¢ ) on Dom 4 is
X,, = X, and the associated map j,, Dom A—X, is

@ —@(0). Let N': Z(R) ® Dom A—L *(R, X, ) be the white
noise product of j ® j, with the canonical injection of
L*R)® X, in LR, X,). Putting £ = (j,, (exp., 24))

*N ', we have (b)=x(a), since for arbitrary time ¢, pe¥, and
with A = B,

(WTE,p) = (N, jo lexp,(t—ud)h{. )
= (N, jo (h{t —u+ .Jy))
= <NIlA’ h(t_ u)y) = <(N]*h T)ny>-

4. THEOREM OF SIMULTANEOUS REALIZATION

In the last section, the following result has been proven:

4.1. Theorem of simultaneous realization

Let X, be a Hilbert space and let N be a Gaussian white
noise, obtained by identifying isometrically A
X, =L%R, X, ) with aspace of Gaussianr.v. Thenac.p. £
can be constructed such that for any l.c.H.s. Y and any
causal filter heL (Y, X,) adapted to N, the c.p. A” *N physi-
cally realized by filtering N, coincides with the observa-
tion A7 of £.

4.2. Connection with finite-dimensional realizability

As is well known, if a process ( g,) with values in some
Euclidean space Y is an observation of some process (£,)
living in some Euclidean space X, then necessarily, the spec-
tral density of { g,) can be written

S, (w) = R (iw)*R (iw)/|Q (iw)|? (4.1)

with Q = real polynomial with all roots in the half-space
Re p <0, with R = polynomial of degree < deg Q, and with
coefficients in L (¥, X°). Conversely, if a process ( g,) with
values in Y admits a spectral density of this “rational type,” a
finite-dimensional realization of { g,) can be constructed
easily. We show now how such realization is “imbedded” in
the universal realization given by the theorem. In fact, let
heL (Y, L}R*, X ))~L *R™, L (Y, X)) be such that

Fh =R (iw)Q (iw)'. Theng = h *N for some white noise N
with covariance §(t — 5) ® Id(X ). Hence g = h” € by the
theorem, where £, is for all £, a linear process on

X = L*R™", X).Decomposing the rational fractionRQ ~'in
irreducible elements, it is easy to see that 4 takes valuesin a
finite-dimensional subspace X I of X, invariant for all left
time translations. Hence, 47 £ is, in fact, a linear observation
of the restriction £ of é to the subspace X {" of X,: this
defines a finite-dimensional realization of g,. The theorem of
simultaneous realization permits the study of approximate
realizations, according to a given probabilistic criterion. We
give a simple example.

4.3. Approximate realization, according to the energy

Let N be a white noise with covariance 8t — s)Id(X ),
where X is a Euclidean space. Let g = A7 *N be a process
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physically realized by filtering N with the causal filter

heX, = L*R™, End X). A polarity argument’ shows that
the space & of elements €X, with FT of the type s = RQ ~!
(Q = real polynomials with all roots in the half-space

Re p < 0; R = polynomial of degree < Q and with coeffi-
cients €X°), is dense in X ;. Hence there exists a sequence (/,,)
in & ® X with limit 4 in X, endowed with the natural Hilber-
tian norm. Hence the processes g = (h ,T)é have finite-di-
mensional realizations. Moreover the process (g”, g) is sta-
tionary and at any time ¢,

E(lg —gl*) =E(|h, — )P
=(|lh, — A llx, -0
5. EXAMPLES OF REALIZABLE RANDOM FIELD
5.1. Definition

If 7 denotes an open subset of R?, the triplet & (I)
CL*I)C2'(I)willbeusedbelow. Let(c, . )beacontinuous
Gaussian field on R X 7, stationary with respect to the time
translations. This field is characterized statistically by the
covariance or, equivalently, by the interspectral measures

Cc(t; X, x’) = E(Ct + h, xch, x' )’

R (0, x') = (2m)~YF ,C)w; x, X').

In order to apply the previous results, the random field
{c.. x) is characterized by the following c.p. on the line, with
values L.p. on Z(I ):

Vi, Veed(l), {(g.¢)= j ¢0 o (x)dx.

Forarbitrary?, C, (¢ )is thelinear operator Z (I } > (I )
with integral kernel C, (f; x, x'); i.e., C,{¢ ) is the linear opera-
tor

¢7—>J C.[t;x, y)p(y) dy.

Hence Ygpe Z(I), the following equality for measures
holds:

(5,01 9) = [ Rl x.x)

X (x)p (x') dx dx'.

By the realizability theorem, {(C, , ) is realizable iff these
measures admit densities with respect to dw, and if there
exists a real Hilbert space X, and heL (Z(I'), H * (X)) such
that the following equalities hold in L (R, dw):

Voed(I), (S (@)p, ¢ ) = ([|(he )| X ).

In order to give simple examples, we consider the parti-
cular case where I = R?, and where the random field (c, , ) is
stationary with respect to all translationsin R? * ! . A second
partial FT of the covariance C. (¢, x — x') produces the total
FT, i.e., the spectral J (w, &) of the random field (c, , ):

Soe)= | [ xp(— o — itx, £
X C.(t, x) dt dx.

5.2 A class of realizable random fields

Let X, be the real Hilbert space defined by the complex
space L (R?, £)°. Let (c, , ) be a stationary Gaussian ran-
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dom field on R? *', with spectral measure of the type
S, &) =02 k(o &)* dwdé

for some /1 (@, £ JeH (X, ). Then the c.p. defined by (c, ),
with values 1.p. on Z(R?) can be realized using the obser-
vation map

h
D(RY) =D —H *(X,)
p—k (0, £)p (€)
In fact, the Plancherel Theorem gives Vg,
27(S; (w)p, @ )

=(2vrr""fzw,;n&wdg

= [ Ikt 1o t6)7 dg
= (1A I, -
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Hence by the realizability theorem, ( g,) is realizable.
For example, the spectral density (0.5) can be realized using

k(w, €)= 27 “* "V (iw + (1 + |£ ).
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A global canonical first-order equation of motion is derived for any mechanical system obeying
Newton’s second law. The existence of a Lagrangian is not assumed, but the properties of the
canonical equation are similar to those of the Hamiltonian formulation. The choice of map F from
velocity space to phase space is not determined by the condition that the first-order equation of
motion be equivalent to a second-order equation on configuration space and therefore is left open
to be selected on the basis of other considerations. The canonical equation is a covector or 1-form
equation on the Whitney sum 7 *Q & 7Q and contains the second-order equation condition,
restriction to the graph of the map F, and Newton’s equation of motion in first-order form. The
last is related to Newton’s second-order equations by the consistency condition that the motions
not lead off graph Fin 7' *Q & TQ. The first-order equation of motion can be projected onto phase

space if the map F can be inverted.

PACS numbers: 03.20. +1,02.40. + m

I. INTRODUCTION

“One of the motivations of these works is the following:
if we understand truly classical analytical dynamics, we have
a chance to understand more easily quantum dynamics and
to obtain new invariant tools.” Lichnerowicz'

Newton’s laws? describe the motions of a classical me-
chanical system in terms of second-order differential equa-
tions. However, for many purposes,” as in statistical me-
chanics and canonical quantization, these motions are more
conveniently described by first-order differential equations,
in particular those of the Hamiltonian formulation.* The
goal of the present work is to derive a global canonical’ first-
order equation of motion for any Newtonian mechanical sys-
tem, without assuming the existence of a Lagrangian.®

The standard derivations’™'° of the Hamiltonian for-
mulation from Newton’s equations of motion for a system
(possibly constrained) or from Euler-Lagrange equations
cannot be generalized directly since these derivations de-
pend critically upon the existence of a Lagrangian L whose
derivatives dL/Jdv', the canonical momenta, determine the
velocities completely and uniquely. Moreover, those deriva-
tions leave unanswered many questions, such as, “What is
the origin of the p-v term in the Hamiltonian?”

The arguments given below explain the origin of that
term and other features of the first-order formulation, and
show that many of these features are independent of the exis-
tence of a Lagrangian. Thus even though one may end up
with the Hamiltonian formalism for the important motions
described by a Lagrangian, it is worthwhile to derive the
canonical first-order equations without assuming a Lagran-
gian in order to see the roles played by other considerations
in determining the features of the canonical equations.

The derivation, which is the source of the explanations,
is based on the use of the one fact that we know about the
Newtonian equations of motion for any mechanical system,
namely, that the differential equations are second-order.
This one fact leads, for instance, to the use of differential
forms in the first-order equation of motion, and then to
phase space, and to the appearance of the p-v term.
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The concern here does not lie in proving that the de-
rived canonical first-order form is unique—it is not—but
rather that there are reasonable arguments applicable to all
second-order equations that lead to that form. Reasonable
choices have to be made at some points in the derivation, and
a choice diverging from that taken here may lead to another
form for first-order equations of motion.

The derivation of a global canonical first-order equa-
tion for motions satisfying any reasonably well-behaved sec-
ond-order differential equation is carried out in stages. Sec-
ond-order differential equations and the problem in
mapping these to first-order equations are discussed in Sec.
IL. Section III shows how to incorporate the second-order
equation condition into a first-order equation, and the final
form of the canonical first-order equation is obtained in Sec.
IV. Variations in the formulation are introduced in Sec. V. A
brief summary and discussion are given in Sec. V1.

11. THE SECOND-ORDER EQUATION CONDITION

The set of possible positions ¢, of a mechanical system
is assumed to be in bijective correspondence with a differen-
tiable manifold'' Q, called configuration space. Further-
more, general differentiable manifold structures must be
considered, since Q need not be diffeomorphic to a Cartesian
space without excluding such a simple case as motion on a
sphere. Locally, each point g, is represented by coordinate
functions {g5,] = (95, 95 - 43)-

Newton’s laws of motion involve a relation, the second-
order equation of motion, that determines the acceleration
{d*q,/dt?} in terms of the velocity {dg,/dt | and the con-
figuration {g,, }; it is assumed in the following that this rela-
tion is given. Our objective is to write this second-order
equation of motion in canonical first-order form, so we begin
with an examination of second-order equations on a mani-
fold."?

An (ordinary) first-order (differential ) equation' on a
manifold Q (also called a vector field on Q or a cross section
of TQ) is a differentiable map
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D: Q—TQ [or &: F(Q)>F(Q)] (1)

that satisfies 7,-@ = id,,. A first-order equation on the tan-
gent bundle 7Q does not give, in general, an ordinary sec-
ond-order differential equation on Q. The necessary and suf-
ficient condition'® that a first-order equation 3 on 7Q must
satisfy in order that it be an (ordinary) second order (differen-
tial ) equation on Q,

Tow'2 = idrg, (2)

restricts theimage of ' tothe submanifold 7°QC TTQand s
called the second-order equation condition."® It holds also for
generalized second-order differential equations (in the sense
of the title of Dirac’s pioneering paper'®).

We now confront the problem of determining the firsz-
order equation of motion, the equation that determines the
first-order differential equation given the second-order dif-
ferential equation on Q,

X,: TQ—-T?*QCTTO. (3)

The solution of either a second- or a first-order equation of
motion is a first-order equation X on some space: the second-
order equation condition distinguishes them. A second-or-

der equation of motion involves the second-order equation

condition and a separate equation for the other components
of X, while a first-order equation of motion is a single equa-
tion for X.

A. The second-order equation condition mapped to a
first-order equation

The properties of the manifold M, on which the first-
order equation X,: M—TM exists, will be specified as we
proceed by examining the conditions that M must satisfy in
view of our goal.

Since we are transforming second-order to first-order
differential equations, we assume that dim M = 2 dim Q.
Moreover, since the eventual aim is to determine motions on
Q, the solutions of X, must project from M to Q, so we as-
sume that M is a bundle with base space Q, pr: M—Q.

Also, the first-order equation X, on M must be equiva-
lent to the second-order equation X, on Q in the following
sense: To each solution curve on X, on TQ, there is one and
only one solution curve of X, on M such that the induced
curves in Q are identical. Thus there is a map from the space
of solution curve points'’ of X,, F: TQ—M, such that
pr-F = 1, (so Fis fiber-preserving).

One half of the first-order equation on M is given always
by a mapping of the second-order equation condition,

pr, - X -F=idy,: (4)
the part pr, -X, of the first-order equation on M is given by
the second-order equation condition to be the pre-image un-
der Fof r,-X,.

However, without knowing the map F, we cannot write
down that part, pr, -X,, of the first-order equation on M that
corresponds to the second-order equation condition. Never-
theless, since we know, at every point on 7Q, the form of pr,,
-X,, and since M and TQ are bundles over Q, that part of the
first-order equation can be given (essentially) by 7,

X, = idr, on the generalized Whitney sum'® W, = M & TQ
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with canonical projection pr; (i = 1, 2) on the jth factor.
The differential equations X, on 7Q and X, on M induce
a map

X: graph FCM e TQ—T (Me TQ) (5)

that projects, by pr,, and pr,,, to X, on M and X, on 7Q,
respectively, and is tangent to W, = graph F. Therefore X
satisfies the consistency condition that it does not generate
curves leading off the constraint submanifold W,.

The second-order equation condition can be applied at
every point of M @ TQ, in which case it holds in particular on
graph F. The condition for any first order differential equa-
tionon M & 7TQ

X MeTQ—~TM e TQCT(Ma TQ) (6)

to project by pr,, to a second-order equation on Q can be
written as

pPr, -Pry, X = pr,, (7)
in which theleft-hand side involves pr,_ -X, the part of X that
corresponds to the first-order equation on M. Thus this form
of the second-order equation condition is useful for the prob-
lem at hand. Moreover, invoking the second-order equation
condition in a form that holds throughout M & 7Q allows
the addition of components to the equation of motion that
restricts that equation to graph F.

[If M = T *Q, this form of the second-order equation
condition appears remarkably similar,'® if one takes into ac-
count the directions of the maps, to the definition of the
canonical 1-formon T*Q & TQ (the pullback of the canoni-
cal 1-form on T*Q),

¢ = pri-pr*-pr,. (8)
The present work arise from a study of the reasons for this
similarity, in particular an investigation of whether or not
the second-order equation condition (7) led directly to the
appearance of the canonical 1-form (8) in the canonical equa-
tion of motion.]

Now we examine what features of the first-order equa-
tion of motion follow from the second-order equation condi-
tion.

lll. THE SECOND-ORDER EQUATION CONDITION AS
PART OF THE FIRST-ORDER EQUATION OF MOTION

Our interest lies in a single equation for pr, -X, of
which the relation (7) is one part. The map pr, can be re-
moved from pr,, -X only by taking the left-hand side as the
argument of a form: for any element o of T *Q, withg = 7,
-pry-7y, X, the second-order equation condition on
Mo TQ|, x maybe written as

(pr¥-pr*a|X) = (a|pr,) forevery acT *Q. (9)
[Note the appearance, for M = T*Q and a = pr, of { p|v)
on one side, and the canonical 1-form (8) on the other, of this
part of the first-order equation of motion.]

Our final concern is a first-order equation on M, so we
transform (9) so it involves elements on 7" *M. Since each
[ = pr¥.a is an element of, and the set generated by all
aeT *Q spans,
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H*M = {yeT *M such that (y|Y,) =0

for every ¥,eTM such that pr_-Y, =0}, (10)
a bijective map

o H*M—T*Q: Yoy (11)
with pr*.g = idy, s, is defined by

(¢|Y,) ={oylpr,-Y,) forevery Y,eTM. {12)

Thus replacing a by o3 in (9) gives
(pr¥-B|X) = (o |pr,) forevery BeH*M (13)

for the second-order equation condition.

This equation is but one half of the first-order equation
of motion, as it appears on M @ TQ, for pr, -X. We want a
single equation for pr,, -X, so we modify the second-order
equation condition (13) further until there is an obvious gen-
eralization to the desired form.

The appearance of 1-forms in (13}, resulting from the
map pr,, in(7), suggests rewriting the second-order equation
condition as an equality between 1-forms restricted to eval-
uation on a vector subspace; the obvious generalization
comes from removing the restriction.

The complete 1-form, whose vanishing is the equation
of motion for X, is here called the motion I-form (for X ):

i EW-T*W, (14

That part of the motion I-form that is homogeneous in X is
the inertial I-form and the remainder, that part independent
of X, is the negative of the dynamical I-form.

At this point in the development of the argument for the
canonical first-order equation of motion, it is possible to see
the general shape of that argument. All told, there are
4N = 4 X dim Q component equations: there are N compo-
nents to the second-order equation condition, N component
equations defining the map, and 2N component equations
for the velocities of the coordinates, other than those of Q, in
M, and in TQ. Let {¢', p;, v* } be coordinate functions on
T*Qe TQ,and {¢', p;, 0" | be the corresponding components
of XeT (T *Q & TQ). Thebasis 1-forms that appear in the mo-
tion 1-form (14) can be taken locally to be dg' and dv’ and,
since our concern lies in 1-forms like the a of (9), those, dp,,
on T*Q. To obtain a global 1-form then, we can identify M
with 7"*Q and form linear combinations (inner products) of
the dg'and the dv' with p, and p, and of the dp, with v', ¢', and
. The additional relations needed are provided by the con-
sistency condition that X be tangent to graph F; this relates i’
to p'. Dimensional analysis indicates that the motion 1-form
can involve the combinations (a) p,dq’, (b) p,dv’, (c) v'dp,, and
(d) ¢'dp;. The second-order equation condition is satisfied if
the only terms in dp; in the motion 1-form are [(c) — {d)], and
(b) and (c) combine in [(b) + (c)] to give d { p|v). Further-
more, (a) and (d) combine by subtraction into the simple form
i(X)-prfw,, where w,, is the canonical 2-formon 7 *Q. Thus
armed only with the knowledge that we want a single equa-
tion for X and that this be equivalent to a second-order equa-
tion, we arrive at

WX ) =iX)pr¥w, —d ( p|v) + terms in dg' and
dv' defining the map F and p,(q, p, v), (15)
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with the expressions for the p;(g, p, v)’s coming from the
given second-order equations (the v”s) by means of the con-
sistency condition.

We now return to the general problem. Because the
terms in the second-order equation condition (13) are linear
and homogeneous in 3, two possibilities for the motion 1-
form come to mind, one involving derivatives and another
involving a 2-form. We examine each possibility in turn.

A. The second-order equation condition in terms of
derivatives of a form

The second-order condition {13) can be replaced by an
equation that involves NV linearly independent derivative op-
erators that act only on the covector part in which the 3 ’s are
replaced by a differential 1-form ¢: M—H *M (with M as-
sumed to be such that a 1-form with the properties listed
below exists). Furthermore, in order that the final form of
the second-order equation of motion can be generalized to
the complete equation of motion, ¢ must vary sufficiently
over M to give 2N independent equations after suitable dif-
ferentiations: thus d¢ must be nondegenerate. In this case,
o-¢: M—T *Qis a diffecomorphism. Thus we replace o3 in
(13) with o-¢-pr,.

Because the values of ¢ lie in H *M, the appropriate
derivative operators are Lie derivatives with respect to ele-
ments of the N-dimensional vector space

Vi={ZeT(M&TQ) suchthat pr, -Z=0}, (16)
derivative operators that we denote collectively by L. .
Since L, -( f-pr,) = Oforevery fin .# (TQ), the second-order
equation condition (13) is equivalent to*"

(Ly,-pri-¢-pr | X)

=L,,(o-¢-pr,|prs)

= — {V)i(X)dO = i(V,)d {o-¢-pr,|pra), (17)
with

0, =pr¥gd-pr;, and w;= —dby|. (18)

This suggests, under the generalization procedure described
above (14), that the equation of motion is

X Yoy =d{og-¢-pr,lpry) + 4, (19)
with {(V,)-A ' = 0, as it contains the second-order equation
condition for any such A '. In particular, for M = T*Q and

o-¢ = idy,,, one obtains that w; is the canonical 2-form and
that

(X )}ws =d {prjpry) + 47, (20)

so it can be argued that the canonical 2-form and the p-v term
in the Hamiltonian arise from the second-order equation
condition.

We return to determine A " after considering the use of a
2-form in the second-order equation condition.

B. The second-order equation condition in terms of a 2-
form

The problem of stripping the map pr,, from X in the
second-order equation condition (7) shows that the single
equation of motion for X involves X as the argument of a
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differential form, i.e., of exterior products of elements of
T*M o TQ). Since theequation of motionis todetermine the
first-order equation pr,, -X, these elements are pullbacks by
pr¥ of elements of 7 *M. The solution of the equation of
motion gives pr,, -X in terms of 7, -X, so the consequence of
evaluating the form on X in terms of 7, -X must contain the
same information, and thus have the same number of inde-
pendent components, as pr, -X. Therefore the form is the
pullback by pr¥ of a nondegenerate 2-form w,, on M (which
is assumed to exist). Then since w, = pr}¥-w,,-pr, is nonde-
generate on V|, the values of {(V,)-i{X )-w, are equal, by the
second-order equation condition (7), to linear combinations
ofthe ¥V linearly independent values of (o-H *M |pr,). These
linear combinations can be calculated once w,, is chosen.

We conclude, from arguments similar to those used in
Subsec. A, that it is appropriate to take /(X )-w, as the inertial
1-form, and that the dynamical 1-form & involves NV linearly
independent combinations of the {o-H *M |pr,).

Before we consider the properties of the dynamical 1-
form 8, we note that the nondegenerate 2-form can be chosen
at this point on the basis of considerations other than those
discussed later in Sec. IV. For example, one can require that
the equation of motion be such that, about any point in
Mo T*Q, there be a coordinate system {m”} on M, called
canonical, in terms of which the equation of motion has the
velocity components isolated on one side. Thus in those co-
ordinates, the 2-form w,, has the form w,, = dy, A dx’ for
{ ¥;»x'} = {m“}{. Equivalently, by the theorem of Darboux,
dw,, =0, so, at least locally, there exists a 1-form 6,, such
that w,, = — d#,,. Thusin this case we can set [cf. Eq. (18)],
at least locally, ¢ = 6,,.

An alternative formulation, equivalent to that obtained
by assuming the existence of canonical coordinates, is given
by requiring that w,, defines an R-bilinear bracket, the Pois-
son bracket

{8} = —HZ)IZ,)wy (21)
that satisfies Jacobi’s identity, where fand g liein % (M ) and
i(Z,)-w, = dh. (This makes the Poisson brackets into a Lie
algebra.) An w,, satisfying these conditions is closed,? so the
arguments of the last paragraph apply. [Note that

— (ZHiX oy, =, 22)

even if i(X,)-w,, is not an exact 1-form.]
We return now to the general problem to see how to
determine the dynamical 1-form é.

IV. THE CANONICAL FIRST-ORDER EQUATION

The motion 1-form i(X )., — & of Sec. IIIB must yield
zero when evaluated on any vector YeT, (M e TQ) at every
point y in M & TQ. The dynamical 1-form & is determined in
part by evaluating i(X ).w, for a given w,, on those Y’sin V;
and imposing the second-order equation condition. Further
information about & can be obtained by considering the pri-
mary constraint submanifold (Subsec. A). This information
can be combined with the second-order equation condition
to provide a basis for the choice of ,, (Subsec. B). Finally,
the dynamics can be introduced to complete the derivation
of the canonical first-order equation of motion (Subsec. C).
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A. The primary constraint submanifold
Since w, = pr¥-w,,, for any vector Yin
V,={ZeT (M & TQ), such that pr,,-Z = 0], (23)

the dynamical 1-form must satisfy § (Y') = O if the motion 1-
form is to be zero. However, this relation need hold only on
the solution subspace of M & TQ, graph F, or the primary
constraint submanifold in the terminology of Bergman,*?
and indeed, defines that subspace if the dynamical 1-form &
is such that

graph F = {weM & TQ, such that § (Y )w) =0
for every Yin V,]. (24)

A motion 1-form involving a dynamical 1-form § with
this property could contain complete information about the
first-order equation of motion. That part of a § giving graph
F can be introduced in the following way.

Because 6 is a 1-form, we want a 1-form that distin-
guishes the points w of graph F, which satisfy pr,-w

= F.pr,-w, from others in M & TQ. For any win M & TQ,
pr,-w and F-pr,-w are points in M on the same fiber of pr, so
weintroduce a 1-form ¢: M— T *M that distinguishes points
on the same fiber in M (and thus gives verticle bundle coordi-
nates on M ). Thus an appropriate ¢ satisfies, for Y,eTM,

(YY) =0ifpr,-Y, =0, 0 ifpr,-¥,#0. (25)
The o of (11) and (12) then gives the diffeomorphism o-:

M—T *Q with which we can introduce bundle coordinates
on M:

g, =gyu-pr and m, = <a~¢‘ 8{ > (26)
g,
There are 1-forms, namely,
oY-pr, — ap-Fopr, (27)
and
pr¥-y-pr, — pr¥-F*y-F-pr,, (28)

that are zero only on the points of graph F. Neither of these is
suitable, however, as the desired part of the dynamical 1-
form 8, since the first is not an element of 7 *(M & TQ ) while
both terms in the second give zero evaluated on any Yin V,
[cf. Eq. (24)]. Thus we must refine our argument to get a 1-
form on M & TQ that mimics the conditions for graph F giv-
en by the 1-forms (27) and (28).

For this purpose, we investigate the subspace V,. We
can associate with each Y in ¥, a unique v in 7Q as follows:
We express any Fin . (M & TQ )} in terms of a smooth func-
tion F, in % (M X TQ ) by

F(w)=F\(pr,w, pryw) for weMe TQ. (29)
Then for every v in TQ, the vertical lift at win M & TQ,
St 1o o @TW (Mo TQ): v—E,(v), (30)
is defined by
d
§,U(v)-F=;IF1(prl-w, prow + Av)| 4 _o. (31)

[Note that although F| is not defined uniquely, £, (v)-F is.]
Every Yin V, can be written as the vertical lift of some v in

TQ,
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Y=¢,@) with w=7,, ¥, (32)

and an argument concerning dimensions shows that ¥, is
spanned by these vertical lifts.

The existence of the vertical lift, which spans V,, sug-
gests that we work with the space dual to 7Q, so we consider
the 1-form (27). The first term is determined by its values on
every vector v in 7Q [corresponding to Y in ¥V, by (32})], for
example, at w in M & 7Q by

(o-¢-prywlv) = {{Y)d (o-¢-pr,|pry) J(w). (33)
Thus [cf. (24)] an appropriate choice to replace o-y-pr is
d {o-y-pr,|pr,). A similar argument for a replacement for
oy-F.pr, does not work because it does not depend on pr,.
The problem in finding an appropriate form is, in terms of
natural coordinates on M @ TQ, to replace terms in dqj, by
terms in dv’ with the same coefficients. This suggests using
the vertical lift map since it does just that. Consider, in view
of (33), a I-form A on M & TQ such that, with Y and v related
by (32),

[{Y)A J(w) = (o-¢-Fpryw|v). (34)

(The remainder of A is yet to be determined.) Then we have
that

graph F = (weM & TQ such that, for every Yin V),

{{(Y){d (o-¢-pr,|pr) — 4 )Jw) = 0]. (35)
Therefore we can write the motion 1-form as
iX)w, — f(d (o-¢pr,|pry) —A), (36)

where one part of /-4 is to be determined by the second-order
equation condition applied to /(X ).wy and, up to this point in
our argument, fis any function on M & TQ.

B. The second-order equation condition (again)

Our arguments have led us to the motion 1-form (36)
with @, given in terms of an arbitrary nondegenerate 2-form
,, on M. The second-order equation condition is tc be im-
posed by equating, for each Y in V|, {(Y )-{(X )-w, after the
substitution (7), to

{Y)[fd {a-¢-pr,|prs) — A ]]. (37)
Now the appearance of that particular exterior derivative
term suggests [cf. Eq. (17)] that an appropriate choice for w,,
could lead to some simplification in the applicaton of the
second-order equation condition.

To investigate this possibility, we let { Y} denote a set
of local vector fields spanning ¥, around w, and @ map the
flow lines of Y, with @' = id. Then

{Y)d {o-y-pr,|pr,)

d i
= <E g.z//.prl.(p (/ll

|Pr2>
A=0

x)
A=0

= ({Y")-d-pr¥-pr*-o-y-pr,|X )
= — {(Y")i(X )-d-prt-ypry; (38)

= <pr1*-pr*- 57 o-pry @Y

this is simply another way of expressing the second-order
equation condition. A comparison of this with (17) shows
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that, if we take f = 1, w,, = — d¢, and i(V,}-4 = O, the sec-
ond-order equation condition and the primary constraint
submanifold are a consequence of the vanishing of the mo-
tion i{-form

{X )wy — (d {o-p-pry|pry) —A). (39)
This is identical, with the identifications ¥ = ¢, , = 0},
and A = — A, to the motion 1-form of the equation of mo-

tion {19). We use the notation of (39) in the following.

C. The dynamics (at last)

The motion 1-form (39) has been determined, in terms
of the 1-form # of (25) and the map F, up to one part of 4,
namely, that part not involved in i{V,)-A nor {(V,)-A. This part
of A is determined by the dynamics of the particular mechan-
ical system under consideration. We assume that the dynam-
ics is known through X, = pr,_ X of (3).

It is the other part of X, namely, X, = pr,_-X, that is
involved in {(X )-w, Were it known, it could be used in the
motion one-form (39) to give the yet-to-be determined part of
A. It is not though, and the equation of motion does not
provide directly a relation between X, and X,. That relation
is given by the consistency condition that the motion, as
determined by X, must not lead off graph F. Thus we have
that under the flow generated by X, graph F goes into graph
F: the relation between X, and X, is given by equating to
zero, on graph F, the Lie derivative with respect to X of a
constraint form whose vanishing determines graph F. An
appropriate choice for this constraint form, since itis a 1-
form on M @ TQ and the condition does not involve evalua-
tion on vectors restricted to a subspace, is (28).

Consistency therefore requires that

0= [ —ilX)wo + (d (pr¥-¢-pr,|X)
- LX'pr?'F*‘lﬁ'F'prZ)] lgraph P (40)

or, with pr*.o = id and the second-order equation condi-
tion,
0 = [i(X )wo — (d (o-t-pr|pr;)
- pr’zk’sz 'F*"/"F‘Prz)] |graph F- (41)
The right-hand side, with the restriction to graph F re-

moved, would be suitable for the motion 1-form if we can
take

A = pr§-Ly -F*.¢-Fopr,. (42)

In order that this identification be possible, the 1-form
on the right-hand side of (42) must satisfy on graph F, corre-
sponding to the conditions (34) and (V)4 = 0 for 4,

i(Y )-pr3-Ly, -F *-{-Fpr,|,,
= (o-¢-F-pryw|v), (43)
for Y, v, and w related by (32), and

i(V)pry-Ly -F*¢-Fpr,=0. (44)

Invoking pr*.o = id and pr-F = 7, in a coordinate calcula-
tion shows that (43) is satisfied and (44) follows from i(¥,)-pr¥*
=0.

The canonical first-order equation of motion is, with a
given second-order equation X,
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i(X }wo = d (o-¢-pr,|pr;)
— pr3-Ly, -F*-y-Fpr,. (45)
The map F and the 1-form ¢ are subject®* to the restrictions

pr-F = 7, and (25}, respectively. Choices for ¥ and ¢ are
discussed in the next section.

V. VARIATIONS IN THE FORMULATION

The 1-form 6,, = ¥, appearing in the canonical 2-form
— pr¥-d6,, of the equation of motion, may be written, since
Ty ‘g.%b = pr,

Oy = (oY)*-0y (oY), (46)

where 6, = 7§ is the canonical 1-formon T *Q. Thus (M, Q,
pr, 84, 0-1) is a special symplectic manifold.** We see that
such manifolds arise naturally when one introduces first-
order equations of motion equivalent to second-order equa-
tions.

Taking M = T *Q with o-¢ = id as the prototype (as we
do in the rest of this section), gives the canonical equation of
motion on the Whitney sum 7*Q & 7Q

iX)-w =d {pr,|pr,) — pr¥-Ly -F*.6,-Fpr,, (47)
withw = pr¥.w, andw, = — d6,,. The canonical equation
of motion still involves the map F, which is not determined
as yet.

An alternative formulation of the canonical first-order
equation of motion is obtained if the second-order equation
condition is imposed on X separately from the equation of
motion. Then one can set [cf. (7)]

d {pr,|pry) =d (pr [Ty, Pri X )
=diX)8,, (48)
where 8, is the canonical 1-form (8) on 7*Q e TQ. With
this, the canonical equation of motion (47) becomes

L,-60, =pr¥-Ly -F*0,-Fpr,. (49)

The map £ may be determined through additional con-
siderations. For example, if there is a metricg: 70—T7 *Qon
Q, then one could take F = g whether or not the metric g
appears in a kinetic energy term.

The map F may be chosen for some mechanical sys-
tems, called conservative, so a conservation law follows im-
mediately from the canonical equation of motion [cf. Eq.
(22)]. A sufficient condition for such a conservation law is,
since (X )-i(X )-w = 0, that there exists a diffeomorphism F,
satisfying pr-F = 7, such that L -F *.6,,-F be exact,” say,
equal to the differential of L: TQ—R. In this case, the con-
servation law 1s

L, ({pr,|pr,) — L-pry) =0, (50)

and the equation of motion is
i(X)w =dD, 51)
with the dynamical function D given by
D:T*Qeo TO—R
s w —{pr,-w|pryw) — L-pryw. (52)

{This differs from the Hamiltonian by being a function of the
independent variables {g’, p;, v* |.] This equation of motion
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can be written also as
L6, =d-Lpr, (53)
if the second-order equation condition is imposed separately

on X. Furthermore, the map Fis [cf. Eq. (24)] the fiber deri-
vative of L:

F=FL:TQ—T*Q, (54)
where
(FL(6)|U):-(;{7L(E+AU) R (55)

The components of the equation of motion (51) are, in
natural bundle coordinates and with

.. d . d 0

X=¢—+p, —+0—, 56
qc?q‘ p . P (56)

i =1 P:‘ZM (57)

dq
and

dL (g, v)

L= 58}

p EX {

These equations are completely equivalent to the second-
order classical Euler-Lagrange equations
i[ﬁL ({L q)} _oJL 9.9) _ ¢ (59)
aq' dq’

dr

And this is true even in the case in which the momenta-
defining equations {58) cannot be solved for every compo-
nent v of the velocity, i.e., when the Hessian det(d *L/dv'dv’)
is zero and the Lagrangian is said to be degenerate.

We now consider other formulations on graph F, 7*Q,
and finally, 7Q.

A. The first-order equation of motion on graph F

The fact that one needs to impose the condition that X
be tangent to graph F, in addition to the equation of motion
which is not satisfied off graph F, suggests the development
of an equation of motion on graph F alone.

For this purpose, we introduce the inclusion map

J: graph F>T*Qe TQ (60)
and the map
F. TQ—graph F: v—{v, F), (61)

which is assumed to be smooth so F is a diffeomorphism.
This map satisfies the relations

pryj =F ~' and F=prj-F. (62)
The condition that X be tangent to graph F'is
X=j, F,pro,-X =1, X, (63)

The motion 1-form for the equation of motion (47) may
be pulled back to graph F by j*: it becomes

l.(XF);*'(‘)Qf]—' o _ _
~—d-(F-F71’F71>+(F71)*'LX,'F*‘0QJ’ (64)

where j = pr, .
Although the motion 1-form (64} gives an equation of
motion on graph F, it cannot give the same amount of infor-
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mation as (47) since the latter must hold when evaluated on
anyvectorin 7 (T *Q & TQ ), whereas the formercanbeevalu-
ated only on vectors in the proper subspace T (graph F) of
that. The missing information is, of course, the defining
equation for graph F, not*® the second-order equation condi-
tion.

B. The first-order equation of motion on 7@

Because of the directions of the maps, in general, the
motion 1-form on T *Q & TQ cannot be pulled back to T"*Q.
Instead, since there is a nondegenerate 2-form on T *Q, one
can project the solution X of the equation of motion to T *Q,
X, = pr, -X, and determine the equation of motion that X,
satisfies. An example of this procedure when F'is not a diffeo-
morphism is given in the following paper.?’

The equation of motion on 7' *Q & 7Q can be trans-
ferred without difficulty to T*Q if Fis a diffeomorphism. In
that case, pr,+ is a diffcomorphism and the equation of mo-
tion (64) can be pulled back to T*Q by [(pr,)'1* to give

iX)wy=d(id|F~'y —F~ "Ly .F*6,, (65)

which includes the second-order equation condition. For a
conservative system, this gives the usual Hamiltonian for-
mulation with Hamiltonian H = [(pr,-)” ']*-*-D and the
second-order equation condition taking the component form
q'= dH/dp..

C. The canonical equation of motion pulled back to 7Q

The equation of motion on graph F given by the motion
1-form (64) can be pulled back to TQ by F *. (Alternatively, of
course, X may be projected by pr,, to 7Q. By our construc-
tion of the canonical equation for X, that must give just X,.)

The pullback of the motion 1-form {64) is

i(X, — pr,, X }d-F*.0,-F (66)

by (2) since X, was assumed to satisfy the second-order equa-
tion condition. Therefore, if Fis a difftcomorphism, so
d-F*.0,-Fis nondegenerate, the projection pr,, -X of the so-
lution X of the canonical equation of motion on 7*Q & 7Q
equals the differential equation X, with which we began, Eq.
(3): we obtain no more?® then we started with. (Note that this
includes the second-order equation condition.)

Vi. SUMMARY AND DISCUSSION

The fact that Newton’s equations of motion are second-
order differential equations has been shown to lead to a ca-
nonical form for the equivalent first-order equation of mo-
tion, a form that displays the features of the Hamiltonian
formulation of mechanics even if a Lagrangian does not ex-
ist. Two requirements, the second-order equation condition
and the demand for a single equation for the phase-velocity
vector X, lead to a first-order equation that, without loss of
generality, may be taken to involve differential forms on
T*Qe TQ.

The dynamical trajectories on 7 *Q @ TQ are limited to
a 2 X dim Q-dimensional subspace, and this restriction may
be taken to be a consequence of the canonical first-order
equation on T'*Q & TQ. The canonical 2-form and the p-v
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term appear in the canonical first-order equation of motion
as a result of this restriction and the second-order equation
condition.

The relation between the phase velocity X, and the ac-
celerations given by Newton’s equations of motion is derived
from the consistency condition that the velocity X, is tangent
to the subspace of the dynamical trajectories. Indeed, this
consistency condition alone leads to the canonical first-order
equation of motion, as shown by the derivation of Eq. (45) in
Sec. IVC.
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I. INTRODUCTION

The local Euler-Lagrange equations for a mechanical
system in the configuration space Q,

i[&L(q,(})] _9Lg.4q) _, (1)
dtl oy dq' ’

are' equivalent to a canonical first-order equation on the
Whitney sum®>® T *Q & TQ of phase space T *Q and velocity
space 7Q. And this equivalence holds, unlike the situation
for classical Hamiltonian mechanics, whether or not the La-
grangian is nondegenerate (hyperregular®). Therefore this
canonical equation is suitable for discussions of generalized
Hamiltonian dynamics,” the case that arises when locally the
Hessian det[d °L (g, v)/dv' dv’] of the Lagrangian is zero so
one cannot solve the canonical momenta-defining equations
p = JdL /dvfor every component v’ = v (g, p) of the velocity.

Generalized dynamics is the finite-dimensional analog
of gauge field theory, so the study of generalized dynamics is
important for the light that it can throw on gauge theories.
Indeed, Dirac’ developed his form of generalized Hamilton-
ian dynamics for that reason.®

The study of generalized Hamiltonian dynamics began
with pioneering works of Dirac’ and, independently, Berg-
mann® and his collaborators, and has been translated into
modern global mathematical language.®~'* Nevertheless,
some questions concerning this generalized dynamics, par-
ticularly regarding its gauge transformations, have re-
mained unanswered or clouded in controversy.!>-?!

The global formulation of generalized Hamiltonian dy-
namicson T *Q & TQ described below” appears simpler and
more straightforward than previous formulations on veloc-
ity space 7Q,"*** on phase space T *(Q, or its primary con-
straint submanifold, the presymplectic manifold (M, w) of
Ref. 13. The analog of the Hamiltonian on 7 *Q involves
arbitrary functions and requires solving the momenta-defin-
ing equations, while the closed 2-form @ on M, or that on
TQ, is presymplectic with a degeneracy, determined by the
momenta-defining equations, that may be different for dif-
ferent Lagrangians. On the other hand, the equivalent of the
Hamiltonian in the present formulation of generalized Ha-
miltonian dynamics is well defined, one is not required to
solve the momenta-defining equations for the velocities, !

* Present address: Department of Astronomy, University of Toronto, Tor-
onto, Ontario, Canada M5S 1A7.
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and the degeneracy in the corresponding 2-form is the same
for all systems with motions in the same configuration space.
As a result of this, ambiguities present in formulations on
T*Q or (M, ) do not appear in the present formulation, as
shown by a specific example in the Appendix. Furthermore,
the relationship between the formulation of generalized dy-
namicson 7 *Qand that on TQis easily established from that
on T*Qa TQ.

Kundt®* has given a local/ ** formulation on T*Q & TQ
of generalized dynamics, but his formulation has been sub-
ject to criticism."*'* Comparisons of Kundt’s local formula-
tion with the present global one are given in a few footnotes.

The canonical equation of motion determines the veloc-
ity vector on T *Q & TQ only to within a vector subspace of
T(T*Q e TQ),sothereare gauge transformationsin general-
ized dynamics. These are discussed in the following paper.®

The canonical equation of motion on 7*Q & TQ, which
is equivalent to the Euler-Lagrange equations on Q, and the
primary constraint submanifold, which results from the de-
generacy of the canonical 2-form, are described in Sec. II.
The final constraint submanifold, the submanifold on which
the motions take place, is derived in Sec. III by three meth-
ods: by the Gotay—Nester-Hinds algorithm'*'* in Sec. IIA,
by a technique that gives results useful for the later discus-
sion of gauge transformations in Sec. II1B, and by the origi-
nal method of Dirac® in Sec. IIIC.

The formulation on T *Q of generalized dynamics s giv-
en in Sec. IV, which contains a discussion in Subsec. A of
what corresponds to the equation of motion on T *Q, the
determination in Subsec. B of the final constraint submani-
fold in 7*Q and the relationship to the corresponding sub-
manifold in 7*Q & TQ. A similar development of the dy-
namics on 7Q is presented in Sec. V, with corresponding
Subsecs. A and B. The relationship between the formula-
tionson T*Qa& TQ, T*Q, and TQ is discussed in Subsec. C.

A short summary and discussion of the present work is
given in Sec. VI. An example of those generalized dynamical
systems that have been the subject of controversy in the liter-
ature is worked out within the formulation on T*Q & TQin
an Appendix.

Il. THE CANONICAL EQUATION OF MOTION!

Consider a mechanical system whose dynamical behav-
ior on configuration space Q is described by the Lagrangian
L:TQ—R. The Euler-Lagrange equations for the system are
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equivalent to the canonical first-order equation of motion,
described below, that generalizes the Hamiltonian formula-
tion.

The canonical equation involves a differential 1-form
on the Whitney sum W, = T *Q & TQ, with canonical pro-
jJection pr; ({ = 1, 2) on the ith factor. There are natural bun-
dle coordinates on W, induced by the coordinate functions
g, on a chart about g, in Q:

q'=4qq o * pry, p; = (pry|d /3qp)
and

v' = (dgy|pr,). (2)

The inertial I-form of the canonical equation contains
the pullback?’ from T*Q, @ = pr¥ - w,,, of the canonical 2-
form w, on T*Q with
and 6, =75:T*Q—->T*T*Q. (3
The dynamical 1-form of the equation of motion is deter-

mined by the dynamical function (corresponding to the Ha-
miltonian)

wy, = —db,

D:Wy—R:uo—{pr, * w|pr,* w) — L * pr, * w. (4)
Since the Lagrangian is degenerate, there is no Legendre
transformation that transforms the dynamical function on
T*Qo TQ to a Hamiltonian on 7 *Q.

The equation of motion determines a vector field X, an
extended velocity vector, on the subspace S consisting of
those points of W, on which solutions, tangent to S, of the
canonical equation exist:

X:SCWyTSCTW,, (5)

The subspace S is called the fina/ constraint submanifold.

The canonical first-order equation of motion for an ex-
tended velocity vector X is

iX)+w=dD. (6)
A consistent solution X satisfies this equation of motion and
is tangent to the solution submanifold .S. This consistency
condition is required in order that the motions derived from
X donot lead into regions in which it is not possible to satisfy
the equation of motion.

The canonical equation of motion cannot be solved at
every point of T *Q @ TQ because of the properties of @ and
D. Indeed, since for each vector Y in

TW = |{ZeTW, such that pr,. - Z =0}, (7)
i(Y)»w =0, the equation of motion cannot be solved at
w =Ty, * Yunlessi(Y)+dD|, = 0. Therefore the canonical
equation of motion can be solved only at points w in W, for
which the map pr, — FL - pr, gives zero: here FL.TQ—T *Q
is the fiber derivative of L, which satisfies 7, + FL = 7.
These points form the primary constraint submanifold

W, = {weW, suchthat i{Y)-dD|,

=0 forevery Yin TW|,} = graph FL. (8)

Where no confusion with other inclusion maps can
arise, an inclusion map is designated here by Jy,main» a5 in
Jw,:W\—W,. Also, it is assumed here that the fiber deriva-
tive is smooth so the canonical map

FL :TQ—graph FL (9)
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is a diffeomorphism, with

pry*jw, =(FL)"' and pr +j, « FL =FL. (10)

For the problems of interest here, the Lagrangian L is
degenerate so, in natural bundle coordinates, det(d L /

Jv' dv’ ) = 0. Therefore there exist vectors in TW ;;, having
local coordinate representations of the form a‘d/dv’, that
annul 3L /8v’ and, of course, p;- These vectors are tangent to
W, and thus lie in and, indeed, span TW \nTW,; for any
inclusion j of any manifold W in W,,, TW is defined by

TW =j. - TW. We assume that m = dim(TW :nTH ) is
constant over W .

The canonical equation and the consistency condition
do not, in general, determine a unique X if the Lagrangian is
degenerate: if X is one consistent solution on .S of the equa-
tion of motion, thensois X + Y forany YeTW ;nTS. Thus
in general, a general consistent solution is not a true vector
field being determined only to within a vector subspace of
TW ;. Dirac® has introduced the adjective generalized to de-
scribe such systems.

lil. FINAL CONSTRAINT SUBMANIFOLD

For a degenerate-Lagrangian system, it is not possible
to satisfy the canonical equation of motion and the consis-
tency condition at all points of W,. The final constraint sub-
manifold S can be calculated through use of any of the fol-
lowing three algorithms.

This submanifold S is the unique maximal submani-
fold'* upon which the equation of motion has consistent so-
lutions. (The equation of motion, as noted before, also has
solutions that are not tangent to S')

Each vector Y epr,. « IS corresponds on a one-to-one
basis to an element YeTS /(TW ;nIS)bypr,. - Y' =7,
where Y’ is a typical element in 7S representing Y. Also,
pry. + X is uniquely determined by the canonical equation of
motion since w, is nondegenerate. Thus the equation of mo-
tion determines a unique element Xe7ZS /(TW ,nTS ).

A. Gotay-Nester-Hinds algorithm?3

Let W, be a submanifold of W, with inclusion j;, and
define W, C W, by W, =, - W,. The sympletic complement
TW ; of TW, in TW, for />0 is defined by

TW; = {YeTW, suchthat o(Z, Y)|,,

=0 forevery ZeTW, |
= | YeTW, suchthat j¥-i{Y)-w =0} (11)
The Gotay-Nester—Hinds algorithm applied to the present

problem generates a sequence of submanifolds { ¥, |, with
Jw, W,—W, |, defined by*

W,,, ={weW, suchthat (dD|TW)(w)=0j},

(12)
withj, =ju. *jw, =+ *Ju,. We assume that there exists a K
such that Wy = W, ., is a submanifold of W,. This Wy is
the final constraint submanifold S.
There are other ways to generate the final constraint
submanifold, the following in Subsec. B being useful for dis-
cussing gauge transformations™ and the one in Subsec. C
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being closer to the spirit of Dirac’s original paper’ on the
subject.

B. Algorithm useful in describing gauge
transformations

Since TW ; consists of vectors Y in TW, that satisfy
J¥ilY)+w =0, {Y)- o can be written locally in terms of a
complete set {¢“/; a = 1,2, ..., dim W, — dim W, | of con-
straint functions for W, as (with summation assumed over
repeated alphabetic indices) /(Y ) - w = a,d¢*’ for some
a,:Wy—R. This observation provides the basis for the fol-
lowing algorithm that determines local forms for the con-
straints. We start with 7W and W,,.

The algorithm proceeds as follows. Given, for />0, W,
and TW |, spanned by the local vector fields | Y*/*+ 1 find
W, . | asdetermined by theconstraints'' {(dD |Y*/* ' )}. 1t
may happen that some of these constraints, or a linear com-
bination of them, have a vanishing differentialon W, , |, but
it is the points of W, , | that are of concern, not the form of
the constraint.”® Replace any constraint (¢D |Y*” ), or lin-
ear combination of those, whose differential vanishes by an
equivalent constraint function ¢*" whose differential re-
mains finite and does not vanish on W,. Find a maximal set

of functions {a, | = {a,,a, |} on W, for which
{TW )+ (a,d{dD|Y ) +a,.d¢“’)=0. (13)
Then solve,on W, |,
iY)+0=d{(dD|ay Y™) + a6 (14)

for a maximal set of linearly independent Y’s that span
TW ;. .[The condition (13)is the necessary and sufficient
condition that Eq. (14) has a solution.] The procedure stops
atj+ 1 equal to that K + 1 that satisfies W, = Wy .

C. Dirac’s algorithm?*

The constraint functions can be derived in another way
that is similar to that used by Dirac in his original paper.
This method is based on the observation that on
W,,i(X’)-w = dD has, by a theorem due to Gotay, Nester,
and Hinds,"” a solution X’ tangent to W, , since
dD|TW; | )[W/ = 0. Then on W}, for a’s that satisfy (13),

(dD | Y %)
= —L,, - @dD|Y" ") +afs"’ ) (15)
The condition (13) is equivalent to requiring that the local
function in parentheses is independent. to first order, of the
velocity coordinates v*. The Lie derivative L 7 1s in this case
the time derivative since
(x /! *Xj)ij, ETWnTW, |y

(16)
and X/ is determined cnly to elements in TWnTW, .
Also the Lie derivative, with respect to such elements, of the
function in parentheses in (15) is zero. Thus the set of con-
straint functions for W, , , is given, in essence, by requiring
that the time derivatives of the complete set of constraint
functions (with nonvanishing differentials) for W, be zero.*

Dirac’s algorithm determines locally the final con-
straint submanifold as follows: On W;, determine

X’eTW, | from {(X,) - @ = dD. (Note that X’ forj> 1 is
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obtained easily from X ') Find all possible linear combina-
tions of the constraints for W, whose differentials are finite
and not zero and are independent of v’ . Set equal to zero the
time derivatives, as calculated with LX/, of these combina-
tions to get W, , . Proceed until;j + 1 equals that K + 1 for
which W, = W, ,.

IV. THE DYNAMICS ON 7"Q

To discuss the dynamics on 7 *Q, we introduce the sub-
manifolds M, = Im FL, the base space for the bundle
riW,—M, withpr,+j, =jy +riand, fori=1,2, .., K,

M, ={meM, suchthatm=r <jy - j, *w,

i

for every w; in W, CT*Q =M, (17)

This yields the maps , = r,|,, andj, :M,—M, ,, with

rl—l ..]W, :ji’\/l,.ri'

A. Equation of motion on 7*Q

A consistent solution to the canonical equation of mo-
tion Xe7§ can be projected to 77 *Q by the tangent of pr,.
Since pr;. « TW = 0, the indeterminacy in X does not re-
sult in any uncertainty in pr,. « X. In the nondegenerate
case, the equation of motion on 7 *Q is the 1-form equation
that pr,. « X satisfies. However, matters are more complicat-
ed in the degenerate case.

The inertial 1-form i(X ) » w involves, everywhere on
T*Qe TQ, only the pr,. » X part of any vector field X. How-
ever, only on W, is it possible for the inertial 1-form to equal
the dynamical 1-form dD. This suggests that an equation of
motion on the final constraint submanifold of 7 *Q might be
found by solving

[pr¥-ifpr. + X} @y +pry —dD ][y, =0 (18)

for the unique solution pr,. « X and substituting that into
i{pri« + X) +w to determine the dynamical 1-form on that
portion of T*Q. The problem with this procedure in the de-
generate-Lagrangian case is that pr. « X (w) is not equal to
pri« * X (w') for every w and w’ in W, such that
pr,+w = pr, *w'. Thus i(pr,. <X )+, isnota l-form:
T*Q>T*T*Q.

This result can be seen also by looking at the dynamical
1-form dD on W,: Since, for w on W, {(dD |Y ){w) is linear
and homogeneous in pr,. * ¥,

@dD|Y) ], = (BIprie * Y} o0 (19)
defines an element €T}, ., T *Q. However, 5* and B
are not equal for every w and w’ satisfying pr+w = pr-w'.

To see how pr,. « X varies along the fibers of
ri:W,—M,, select any two points on one fiber, join them
with a curve generated by a vector field Y:W,—TW ;nTW,,
evaluate X at the two points, project down to 77 *Q, and take
the differences at the two points. In the appropriate limit, we
see that if X is a solution of [{(X') - w —dD],, =0, wecan
write .

0=[{LyX) w0 —d(dD|Y)]|,,. (20)

Since (dD |Y ) is a constraint function for W,, L, - XeTW
sopr;. * Ly Xepr,. « TW ;. For ZeTW ;, we have
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0=jwe *H{Z) @ =r1a* [Jage *Hlpr1e  Z) 0g].(21)

Therefore pr,. - ZeTM ; where, for M, a submanifold of
T*Q withinclusion &, =y *jy *- - I,

IM; = {Y,eT*Q suchthat A¥-i(Y,) w0, =0}.
(22)

We conclude that pr,. - L, XeTM ;. Since, for
p=pr,cw=pr +w, T ,Mj is a vector space, and the rate
of change of X at each point along the curve liesin 7, M |, the
difference pr,. * X (w) — pry. * X (w') lies in TM |. Thus
X, = pr,. - X is determined at the point p only modulo ele-
ments in TM |.

To obtain a typical element X, we assume a local sec-
tion
aUCT*Q-T*Qae TQ (23)
that on UnM, picks out one point on each fiber of
rpW,—M,. We set

dD=dD-o-pr,)+d(D—D-0-pry), (24)
and note that d (D — D+ o'+ pr,) corresponds*' to the differ-
ence between pr,. - X at two different points on the same

fiber so is equal to the differential of a constraint for W,.
Therefore we get a typical element X, from the vanishing of

pri[ilX,)) 0w, —d(D-0)], (25)
or, alternatively by taking the pullback by o™* of this,

iiX)) wy, —dH, (26)
where H is the “Hamiltonian”

H=D:0:UCT*Q—R. (27)

The resulting equation of motion determines pr;. * X up to
elements in 7M ;. Thus one could obtain an equation of mo-
tion for all pr,. - X by adding to dH arbitrary linear combi-
nations of the differentials of all the constraint functions for
M, in T *Q, this being the procedure followed by Dirac.”’
Alternatively, we could work on M, alone and take the
equation of motion on M, to be the pullback by /¥ of (26).
Since X, must be tangent to M, this is equivalent, with
X, =jups c Xy, 10
(X, )3, c w0 = d (H ]y, (28)
the equation of motion with which Gotay, Nester, and

Hinds' started their discussion of Dirac’s generalized me-
chanics.

B. The Gotay-Nester-Hinds algorithm on 7*Q

We now show that the algorithm generates the se-
quence
My — - My M, My =T*Q. (29)
Sty Jn, Iay
The map A, satisfies pr, +j, = h, - r; so, if Yin TW|,,
lies in 7W;, then

h¥eilpr. + Y) o, =0. (30)
Therefore pointwise,
T™ ; =pr,. - TW;. (31)

Finally, pointwise,
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(dH |TM )., w, = (@D |ow o1 * TW )| ooerow,
(32)

However, if Y liesin W, thenj¥ - i(o. * pry. * Y) - wiszero
and thuso. - pr,. « Y liesin TW ;. Thereforer, ., - W, is
the set

M, ={peT*Q

such that (dH |TM;)(p)=0]}.

(33)
V. THE DYNAMICS ON 7Q

A. The equation of motion on 7Q

The equation of motion on T *Q & TQ has been shown'
to be equivalent to its pullback, by J¥,, to an equation of
motion on W,; all that is lost by the pullback is the set of
constraints for |, and part of the second-order equation
condition (lost because of the degeneracy of w,; defined be-
low). The pulled-back equation and imposition of the lost
part of the second-order equation condition is equivalent, by
the diffeomorphism FL ~', to a second-order equation on
Q.

Since a consistent solution X' to the equation of motion,
where it exists, is tangent to W), X =, . « Xy, , we have
that X, = pry. + X determines X =, . * FL. - X,. The ar-
bitrariness in X is preserved since, if Z in TW is not zero,
neither is Z, = pr,. + Z.

FL )*.
The energy is defined by E= D+, - FL and we set
o, =FL*+ w0, to obtain the motion 1-form on 7Q

iX,) 0, —dE. (34)
The vector X, is determined (up to some vectors in 7H ;) by

the vanishing of this 1-form and the second-order equation
condition

Tow Xy = idpg, (35)

plus the consistency condition that X, be tangent to the final
constraint submanifold.

The motion 1-form pulls back to 7Q with (j,,

B. The Gotay-Nester-Hinds algorithm on 732

The algorithm generates the sequence of submanifolds

.. N, >N, >N, =TQ. (36)

iy v
We define, withrj,vl = id g,
8 =y, tJx, v, (37)
For Y, = FL . - Y,, we have that
griY,) o, =gF FL*+j3y ~iljw,.* Yu,) 0. (38)

Since FL is a diffeomorphism, we have, for / = 1, that
Y,€TN; iff j,  + FL.+Y,liesin TW . Assume that
pointwisejy, + FL .« TN ; = TWistruefor one valueof /.
Then

(dE|TN;)(n) = (dD|TW ) jw, * FL +n), (39)

soneN, ., iffj,, + FL «nliesin W, ;. Thus we have,
pointwise, W,, , =/, + FL +N, , or N,
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=pry* W, . Thereforej,, « FL -g,,

* (Pr2|w,+,) =jy+190,by(38), TN | =pr *TWi,y,
pointwise. Thus by induction, ¥; = pr, + W, pointwise for
each .

C. Relationships between the formulations on phase
space, velocity space, and their Whitney sum3?

Formulas expressing the relationships between the dif-
ferent elements of generalized mechanics—velocity vectors,
inertial 2-forms, and generating functions (dynamical func-
tion, “Hamiltonian,” energy)—are given above or follow
from (pr; — FL « pr,)| 5, = 0 as well as its consequences,
such as the tangent of that map restricted to TW,. Complica-
tions in these relationships arise because of local gauge invar-
iances®® or, equivalently, because the velocity vectors on the
Whitney sum, velocity space, and phase space are deter-
mined only up to elements in a vector space, V', .,

= TWinIS, prye * Vyan,and TM inpr,. « TS respectively.

A velocity vector X on the Whitney sum projects down,
by pr,., to a velocity vector X, on TQ, preserving its indeter-
minacy, and can be regained by use of pr, *j,, = ( FL)™'.
On the other hand, a velocity vector X, on phase space is not
obtained by the projection pr,., but rather by choosing a
local section o (23) and relating X, to X | .. The difference
between the X,’s corresponding to two local sections lies in
TM ;. These relations result from the fact that the primary
constraint submanifold W, is related to 7Q by the diffeomor-
phism FL and to M, a proper submanifold of T *Q, by the
bundle map r,.

The velocity vector X on the Whitney sum satisfies the
second-order equation condition, unless the Lagrangian is
inconsistent with that, so pr,. * X and X, do too. However,
the equation of motion on 7Q involves the degenerate w,
and may possess®> consistent solutions X ; that do not satisfy
the second-order equation condition; nevertheless, if there is
a consistent solution, which satisfies the second-order equa-
tion condition, on T *Q & 7Q, there is a consistent solution
on TQ that satisfies that condition, namely X, = pr,. * X.

One can, in this way, relate the formulations on 7*Q
and TQ through the “master” formulation on T*Q & 70,
which contains them both. And since the velocity vector on
T*Q e TQ determines motions that satisfy' the Euler-La-
grange equations for the Lagrangian L, there are solutions
X, and X, on T*Q and TQ, respectively, that do too.

VI. SUMMARY AND DISCUSSION

The canonical equation of motion on the Whitney sum
T*Q & TQ of phase space and velocity space is equivalent to
the Euler-Lagrange equations even in generalized dynamics
and “‘spreads” them out’ into the second-order equation
condition, the definition of the map FL, an equation for the
momenta velocities p; and, through a consistency condition,
an equation for the accelerations &' . The formulation of gen-
eralized Hamiltonian dynamics on T *Q & 7Q does not re-
quire one to solve the momenta-defining equations p = dL /
dv, asis necessary for the formulation on 7 *Q (and leading in
some cases to problems, as shown by the example'® given in
the Appendix), nor to eliminate those solutions that do not
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satisfy the second-order equation condition, as is necessary?
on 7Q.

The problems in generalized mechanics are that the mo-
tions are restricted by constraints and that the trajectories
are not unique. The constraints can be calculated by means
of the Gotay—Nester—Hinds algorithm'? or others. The pro-
cedure on T *Q o TQ is straightforward, as shown by an ex-
ample in the Appendix. The indeterminacy in the extended
velocity vector X (w) due to the degeneracy of w lies in
T, W, a vector surface of T,, W, that does not depend on
the Lagrangian, whereas those for X,(v) and X ,(p), on T, Q

.and T *Q, respectively, do depend on L. The gauge transfor-

mations that relate the different possible trajectories are dis-
cussed, on the basis of the formulation on T*Q @ 7Q, in the
following paper,?® which provides a straightforward resolu-
tion of the gauge problems discussed in the literature.
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APPENDIX

The final constraint submanifold and the solution X of
the canonical equation of motion are calculated, and briefly
discussed, for a typical case'® of those generalized mechani-
cal Lagrangians that have sparked controversy in the litera-
ture.

The calculation is presented in abbreviated form, begin-
ning with the Lagrangian, the constraint submanifolds given
by the constraint equations required beyond those given
above that, vectors spanning the symplectic complement
given in the same way, a general vector T in TS *nTS with
small Greek letters representing arbitrary constants, and the
time-dependent consistent solution X with capital Latin let-
ters representing arbitrary functions:

2 2
L=vuv; +1yz,
W0= {x’y’z’px’py9pz’ Uy Uyy vz}y

wy. 9 9 9
dv, dv, dv,
Wl:Px_li:O’py:O’ pz_zvxuzzo’
TW}:i,
dy
.. 4d
W,z=0, TW;:—,
p.
Wyv, =0, so p,=0,p, =0,
w:. 9 9.
dx Jz
a d d J
T=a-—— +B—+y— +6—,
“ o TP o Yo, "%
a a ) a
X=42 +B 2% 1o, 2L 4 2.
dv, v, Ox 7 dy

Frenkel missed-the constraint p, : this constraint fol-
lows in the formulation on T *Q from the equation of motion
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x = p,/(2p}"?) and the constraint p,. One must examine all
the component equations of motion to see that they are con-
sistent on the final constraint submanifold. The reason that,
working on 7 *Q, one has to examine all components of the
equation of motion is that solving the momenta-defining
equations, not required on T *Q & TQ, may hide some con-
straints, as it does in this case and in an example [his Eq. (1}]
due to Cawley."”

The vector d /dz corresponding to the constraint p, is
not tangent to S, nor is the vector d /dp, corresponding to the
constraint z, so these vectors do not appear in 7. In the ter-
minology of Dirac,>’ z and p, are second-class constraints.

Cawley'’ claims that the constraint p, would be missed
without an “‘augmented algorithm” and a similar claim, but
with a different algorithm, has been made by Di Stefano.”'
However, there is no ambiguity about these constraints, and
no need to formulate any augmented algorithm in the formu-
lation of generalized dynamics on 7 *Q @ TQ, and none on
T*Q if one imposes the necessary requirement of the consis-
tency of all components of the equation of motion.

'R. Skinner, “First order equations of motion for classical mechanics,” J.
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Generalized Hamiltonian dynamics is the finite-dimensional version of gauge field theory and
possesses invariance properties corresponding to gauge invariances. It is argued herein that a
proper description of the finite-dimensional gauge transformations requires a time-dependent
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obtained from this distinction clarifies some ambiguities that have appeared in the literature. In
particular, the time-dependent formalism provides a precise statement for Dirac’s conjecture
concerning the form of the generalized Hamiltonian on phase space.
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|. INTRODUCTION

Generalized Hamiltonian dynamics is the mechanics of
a discrete system in a finite-dimensional space  whose mo-
tions are described by a degenerate Lagrangian L, one for
which the momenta-defining equations p = dL /dv cannot
be solved for every component v'(g, p) of the velocity. Each of
the various forms of the equation of motion' on 7*Q, TQ, or
their Whitney sum”>> T *Q & TQ possesses consistent solu-
tions only over a proper submanifold of the base space and,
in general, does not determine a single vector field (the rel-
evant “velocity” vector). Rather, each determines a subset of
the tangent space over each point of the final constraint sub-
manifold in the base space 7 *Q, TQ, or T*Q & TQ. A consis-
tent solution of the equation of motion is a smooth vector
field on the final constraint submanifold with values in those
subsets, and the difference between two consistent solutions
has values in a vector subspace over each point. Further-
more, consistent solutions are physically indistinguishable,
so that transformations that map one consistent solution
into another are called gauge transformations.

The gauge transformations of generalized Hamiltonian
dynamics have been the subject of controversy in the litera-
ture.*""? The study of gauge transformations given below
shows the origin of that controversy and eliminates the am-
biguities present in the literature. It is argued below that a
time-dependent formulation of generalized Hamiltonian dy-
namics is necessary for the definition of and discussions on
gauge transformations. The time-dependent formalism dis-
plays clearly the difference between global and local gauge
transformations, the former involving arbitrary constants,
the latter arbitrary time-dependent functions. Some of the
controversy in the literature results from the failure of the
time-independent formulation to display that difference
clearly.

A brief outline of the formulation on 7*Q & TQ of gen-
eralized Hamiltonian dynamics is given in Sec. II. The argu-
ment for the need to describe gauge transformations within a
time-dependent formalism and that formalism itself are pre-
sented in Sec. III. The definition of gauge transformations
and the general properties of their generators appear in Sec.
IV. The relationship between the generators of gauge trans-

* Present address: Department of Astronomy, University of Toronto, Tor-
onto, Ontario, Canada M5S 1A7.
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formations and first class constraints is the topic of Sec. V.
An important class of such generators is derived in Sec. VI,
where the distinction between global and local gauge trans-
formations appears. Dirac’s conjecture,'* the subject of
much of the controversy in the literature, is discussed and
clarified in Sec. VIIL. The gauge transformations for the for-
mulations of generalized dynamics on phase space 7 *Q and
velocity space TQ are given in Sec. VIII in terms of the for-
mulation on 7*Q & 7Q. A brief summary and conclusions
are given in Sec. IX. Typical cases of the specific examples of
gauge transformations that have caused controversy in the
literature are worked out in an appendix.

. FORMULATION OF GENERALIZED HAMILTONIAN
DYNAMICSON T™Qa 7Q

The Euler-Lagrange equations for a mechanical system
with configuration space Q and described by the Lagrangian
L: TQ—R are completely equivalent,'® even when the La-
grangian is degenerate, to the canonical equations of motion
{4) or (5) on the Whitney sum W,, = T*Q & 70Q, with canoni-
cal projection pr; on the rth factor, of phase space T *Q and
velocity space 7Q. In those equations, XeTW,, is the ex-
tended velocity vector with components (', p,, 0¥ ) relative to
the natural bundle chart on TW,, induced by that with co-
ordinates (¢', p;, v*) on W,, the canonical 1- and 2-forms are

@=pr¥-6, and w=priw, (1)
with

Op =mp: T*Q—T*T*Q and w, = —db,, (2)
and D is the dynamical function

D: W,—R: w—{(pr,-w|pryw) — L-pry-w. 3)
The canonical equation of motion is

iX)w =dD (4)
and is equivalent to the two equations

Ly¢=d-L-pr, and m,, pr,, -X=pr,, (5)

the latter being the second-order equation condition.

The equation of motion cannot be satisfied at every
point of W,,: In the degenerate Lagrangian case, the equation
holds only on the final constraint submanifold S upon which
the equation of motion possesses consistent solutions, a con-
sistent solution X being a solution that does not describe
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motions leading off S. Thus, a consistent solution X lies in
TS: =js, -TS with § = j-S and j¢ the inclusion of §'in W,
There exist a number of procedures'*>'¢ for calculating the
final constraint submanifold.

The equation of motion does not have, in general, a
unique consistent solution in the degenerate Lagrangian
case: If X is one smooth consistent solution and Y any
smooth vector field such that ¥ |scker wnTS, then X + Yis
also a smooth consistent solution. The difference between
any two consistent solutions is a vector field on § with values
in, and such differences span,

V = ker wnTS. (6)

Ill. TIME-DEPENDENT FORMALISM

A vector field in ¥ on S generates through its flow a map
that, for an infinitesimal time, leaves the physical state un-
changed. One cannot conclude from this, however, that a
finite flow of a vector field Y'in ¥ on S is a transformation
that leaves the physical state unchanged since (with X a con-
sistent solution to the equation of motion) it is X + Y that
must be considered, not ¥ alone. For example, the flow @ | *’
from time O to time ¢ generated by X + Y is not necessarily
the flow @, generated by X alone followed by the flow @}
generated by Y alone.

In order then to discuss the transformations that
change X'into X 4 Y, we must take the time into account and
work with

W=T*QeTQ XR (7)
with ¢, the coordinate on R, equal to the curve parameter of X
and with canonical projection pry,.: W—W,,. The solution X
is modified to XeTW such that t Pry, - -X = X by the addition
of a time component with {(d¢ |[X } = 1. Theextracomponent
in X allows one to take account, by means of Ly, of rates of
change due to an explicit time dependence, as well as varia-
tions with time due to motions in T*Q & 7Q.

Any Yin TW, can be lifted uniquely to a vector Yin TW
by

" TW,—TW with pry,-Y=7Y and (dr|Y) =0.

(8)
Let the zero vector field in R be designated {0} soYe TW

where, for any space M, M = M X {0}. Also, any function f
on W, can be lifted uniquely via the map

pru: WoXR—Wy (wy, t)—>w, (9)
to a function fon W by
F (Wl F (W) frof=fpro. (10)

The equation of motion in the time-dependent formal-
ism is, on W,

iX Vo, =0
with

wp =& +dDAdt and & = prt-w. (11)
IV. GENERAL PROPERTIES OF THE GENERATORS OF
GAUGE TRANSFORMATIONS

Let G be a vector field

G: Wyls XR—TW,|s X TR (12)
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that generates diffeomorphisms that transform a consistent
solution X into X + ¥ with Y a vector field in 7. The trans-
formations must not generate motions off the final con-
straint submanifold so that G is tangent to S X R. The trans-
formations must leave the time parametrization unchanged
so L;¢ = 0, and therefore Ge TS . The equation of motion
must remain unchanged in form so G satisfies, on S X R, L
-@ = dK A dr for some function K on W. Thus, G is the gener-
alization to the Whitney sum 7 *Q & TQ of the generator of a
canonical transformation on 7 *Q.

Our interest here does not lie, however, in general ca-
nonical transformations, being restricted to only those that
change X by the addition of a ¥ in V. Thus, we impose the
condition that

L X<V (13)
for every solution X of the canonical equation of motion.
The possible differences X — X' between any two con-

sistent solutions X and X’ span ¥ and so, since L, X
— X ')V, we have that

L, YeV for any vector field Yin V. (14)

This condition and (13) for one particular solution of the
equation of motion are equivalent to (13) for every solution X
of the canonical equation. Furthermore, for any G’ and G~
satisfying the conditions for G given above, we obtain

Lo X=Lg (Lg-X)— Lg.(Lg X )eV. (15)

Hence the set of such G ’s is closed under commutation.

We call a gauge generator any vector field G that is a
canonical transformation and satisfies {13) and % the set of
all gauge generators. The flows generated by an element G of
Y we call gauge transformations. Note that the generators of
gauge transformations may be defined only on S X R.

That such transformations are generalizations of the
usual gauge transformations can be seen from the following:
Consider local natural bundle coordinates {¢’, Pis vt .
Then, on S XR

L,v'=LsLyq¢' = LyL.¢ (16)
because of (13). Thus, the gauge transform of v' is the time
derivative of that of ¢’. Moreover, G liesin 7S so, in particu-
lar, on § X R -

aL

Lo(p. - 5)—0; (17)

under a gauge transformation, the transform of p; can be
obtained from that of L/3v". Finally, we have from the
equation of motion in the form (5) that, on § X R,

Lg<(L-prypr,,.)

= Ly+i(G )-pryy-prE-8, — ([ X, G 1)-prl pr-6,

d
= (pr¥-@ [pry, -G ) (18)

so the gauge transform on S of the Lagrangian is a perfect
time derivative.

V. GAUGE GENERATORS AND FIRST CLASS
CONSTRAINTS

We investigate further the condition for gauge transfor-
mations that distinguish them from other canonical trans-
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formations. That condition, Eq. {13), is equivalent to

i([G, X )@|sr =0 (19)
for every consistent solution X of the equation of motion, or
equivalent to (14) and (19) for one consistent solution X.

The condition (19) can be transformed by using the
identity, for vector fields 4 and B,

{[4,B])=L,(B)—iB)L, (20)
onextensions X * and G * of X and G tolocal vector fields on
W. { An appropriate extension for X * in a natural bundle
chart is given by the solution to

iX *)& = [dD — ({dD |8 /3v') pryy)dv'] (21)
thatsatisfies (d7 |X *) = landreduces toi’oné‘ X R.} Equa-
tion (19), independently of the extensions, is equivalent to

— {(X)di(G ™) +d{dD|G*T)=0 (22)
on S XR, since G is tangent to W.

This condition can be rewritten: Evaluating (22) on any
local vector field ZeT'S, with extension Z *, and using the
definition of the exterior derivative gives, on § XR,

—4X[3(G*,Z ")} - Z(dD|G*)

— (G, [¥,Z1)} =0. (23)
The left-hand side of this equation appearson.S X R in do(X,
G, Z ) as given by the definition of the exterior derivative of
the closed 2-form @:

HX[BG*,Z%)] —G(dD|Z*) +Z(dD|G ")

+4dD|[G, Z1) —a(Z, X1, G)}lsnr =0. (24)
Therefore, on S X R,

L,{(dD|Z*) —(dD|LzsZ) =2L,{(dD|G ")

=(LsdD|Z*) =L,{(dD|G*) =0, (25)
s0(dD |G * ) isalocal constraint'’ on.§ X R, equaling a con-
stant there. Moreover, (dD |G *) is afirst class function'” on
S X R since, as shown in the following paragraph,

YAdD |G *)|s.r =0 forevery YeTS".

We use the definition of TS *: Let Z be a vector field
such that Z | ;€TS s0 i(Z )-i(?)-5|§xR = 0. Since Ge TS,

0= LG.I.(z_)'i(?_)'a)LS‘ xR _

= [{LGZ Ji(Y )@ + i(Z Ji(L Y @
+HZ)iY PLs®@]|s g (26)
The first term is zero as L;Ze TS . To evaluate the third

term, we use L@ = dK A dt and the equation of motion on
S: Sinceon § X R

Lgoi(X )& = i(X )L - @ = (dK |X ) dt — dK

=L, «dD=d{dD|G™), (27)
HZ VY )Ly &= —i(Z)i(Y)d(dD |G *) Adt =0
(28)

on S X R. Therefore, from (26), pry, ‘L. ¥ |s.. z€ 7S *and
hence )

YdD |G *)s =G-(dD|Y)|s + {[¥, G 1)dD |5,
=0, (29)
as GeTS and (dD | TS )| = 0.
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Thus, it follows from (13) that {(dD |G *) is a (local) first-
class constraint on S.

VI. GAUGE GENERATORS IN (7S'n7S) x {0}

The set & of gauge generators G yields first-class con-
straints (dD |G ", as does each element ¥ whose restriction
on § lies in

® = TS 'nTS X {0} (30)

[where TS *is the set of all vectors Z such that j*-i{Z )-w = 0],
since Y generates a first-class constraint ¢ through'®

i(Y )& = dp. However, ¥ may contain elements not in ®, as
the example G = d /dq for the one-dimensional system on
Q = R with L = v* + g demonstrates. Nevertheless, ® and
{ X, Ye® } are closed, as the following arguments show, so we
might expect that there is a subalgebra of % that lies in ®.
We determine this subalgebra in this section.

To show that & is closed, let X and Y be vector fields
that on restriction to § X R lie in @ and Z be a vector field
with Z | g€ TS . The fact that & is closed gives, on S XR,
a([X, Y1, Z) = O since TS is closed under commutation.
Therefore, ® is closed under commutation. With X * any
extension of a consistent solution of the equation of motion,
the definition of d&(X *, ¥, Z'), which is zero, giveson.§ X R

0= —Y(dD|Z)—&(X, Y], Z)+{dD]|[Y,Z])
= —Z{(dD|Y)—3(X, Y], Z)
= —a(X, Y], Z) (31)
so that { X, Ye®] is closed under commutation.

To calculate the elements in &, we expand the extension
G " of an element G of & in a set, to be selected shortly, of

basis vectors {Z“},_,, ;yfor TW

G*=b,Z" withb,: WoR. (32)
Equating (22}, with this expansion, to zero gives, on § X R,
with Ly, = b,

b Z*)®=0b,d{(dD|Z*) —b,iX)d-iZ"}@. (33)
In the following, we show how to solve this equation for
those G that involve local vector fields in &, which contains
V (cf. the first paragraph of Sec. I1I). The method of solution

relies heavily on the local calculation of the final constraint
manifold described in Sec. IIIB of Ref. 1.

A. Choice of basis vectors for &

Take, then, for the first dim ¥ of the Z*’s, a set of local
vector fields { Y “'}, where the set { ¥ *'} | spans V local-
Iy on S. Then, on S X R, )

(Y% =0 and (dD|Y™')=<(dD|Y“")pr,.(34)
But the ¥ *"’s generate sets { ¥ “?} and so on through rela-
tions involving {(Y )-w’s and (dD | Y )’s, as described in Sec.
ITIB of Ref. 1.

The form of Eq. (33) suggests that we consider the equa-
tion

{Y%w=d (dD|Y %) (35)
and ask if, for ¥ ?|s in TS 'nTS, there exists a solution Y=
such that ¥ %[ lies in TS. (Such a solution would also lie in
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TS * because of the equation that it satisfies.) By a theorem
due to Gotay, Nester, and Hinds,” there does exist such a
solution if, on §,(d (dD|Y “)| TS *) = 0. We now show that
this relation is satisfied for the ¥ “ of interest here.

Let Y be any local vector field in 75 *. Then, on S,

(Y )dei(Y ) dD = i(Y “}LydD + i([ Y, Y] )-dD
= i([ Y, Y*])-dD. (36)

This last term is a constraint function vanishing on Sif [¥,
Y%] on S liesin 7S *. To show that the latter is true, let Z be
any local vector field such that Z | = jk,, -Zx. Then, on S,

HZ)A(LY, Yo = — L. [ijxy-Zx)i(Y @]
+ ULy adky Z )Y )
+ i(jK* 'ZK)'i(Y)’Lyu'w
=i jip L)Y )d-H{Y )00 (37)

since ¥ “ lies in 7S and Yin 7S *. The last expression in (37)
vanishes if, on S, {{Y “).w = d¢ for some ¢. Since ¥ “ in
ker onTS does satisfy'® an equation of this form, there exists
a solution ¥ to (35) that is tangent to S.

Thus, we can start with a minimal set of local vector
fields { Y?'] (suitably selected, as described below) that span
ker onTS and generate by

(Y% w=d{dD|Y" ), (38)

with Y%/ in T, a sequence of vector fields { Y '} that, on S,
lie in ker @NTS. The vector fields resulting from this proce-
dure are the only ones generated by { Y in ker 7S | and
therefore (see the first paragraph of Sec. ITI) appear at first
glance to be the only ones needed in discussions of gauge
invariance and of Dirac’s conjecture (see Sec. VII). This is
misleading, though, since the zero vector lies in ¥ so the
condition LGX’ = 0 may apply to certain gauge generators.
These arise from those Y%/ ' for which d {dD|Y?/ ') is
zeroon S.

Notice that if the differential of (dD|Y?/ '}, oralinear
combination of these, vanishes, then the corresponding ¥ %/
that lies in 7'S is zero. In this case, one linearizes those parti-
cular constraint functions and looks for a linear combina-
tion, say ¢/, with a finite nonzero differential on S and such
that a solution Y~ of

i(Y)w =de¢’ (39)
exists that is tangent to S. Then one calculates Y/ ' from an
equation similar to (35) and continues on. The procedure is
similar to that described below; an example is given in the
Appendix. In any event, we take the ¥ *”s and Y”’s as a
basis'® for &.

Note that dim ker «nTS need not equal dim-

ker wnT W : On the one hand, a vector field in TH| need
not lie in 7S whereas, on the other, a vector field can lie in
7S, and $0 In TW,|s, but notin TH, [, .

B. Calculation of gauge generators in &

Let us assume that there is no Y #/ such that {(dD| ¥ ¥)
yields an independent constraint and d (dD|Y ¥) = 0. (This
assumption is made only to keep the equations in managea-
ble form; it is straightforward in a specific case where this
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assumption does not hold to generalize the method given
below.) Then, we set the Z # for a limited range of 4 equal toa
suitable set of basis vectors for ker wnTS, selected in the fol-
lowing manner. Let {Y°** !} _, bealinearly inde-
pendent set of vectors that span { Y?%*!}. Then we can
write on .S

(YK ) = d (dD | YK (40)
for some linearly independent ¥ “’* in the span of { Y ?¥ }.
Let my be the dimension of the span of { Y ?* }. The (m
— my ., ) vectors { Y "%} needed to form, with { Y%}, a
basis { Y ** | for the span of { ¥ “* } may be chosen so that
each (dD|Y “”*) is a linear combination of the {dD|Y *'*)
and (dD |Y¥) for j < K. Repeat the process with | ¥ ¥} re-
placing { Y“* * '}, and so on. Thus, we obtain a set { Y “}
that forms a basis for the span of { ¥ %} with

l~(yuj+ 1)-&) — d (dD ‘ Y”j>,
a=1,.., m; and j=1.2,.K, (41)
(dD |Y¥) =
a=m; ., + 1. m;,

CUdD|Y", j=1,2,.,K +1,

=12, b=12,..m, .
(42)
Note that my , , =0.
We now expand G on § XR as
K+ 1 m

G=3% S b,79 (43)

Ji=1a—1
with the b,; functionson.S X R that are to be determined as
far as p0551ble by Eq. (33):
Kyl m

z Z buj aj"w

mi,

> by . d (dD |Y%)pr,

a

“M>~ LM?

mp

Z b,d{dD |Y¥)-pr,,

K+ m, mey
+ Z buj z Z Clnd <dD ‘Yh,> pru
Ta—m 4 1 i=1 -
K m. K +1 m
-zz@+z S buct)
j=1la—1 i=j b—m,,
Xd {dD|Y¥)-pry. (44)

Thus, for j<K and 1<a<m,; , ,,

m,

Kl
bu% :{IJ+Z Z

f=j b=—m  +1

by Cl (45)

The b, s are also subject to the condition (14} so, for any
vector field Yin V,

K i1 my

S S {(Yh,) Y9+ b, [V, Y] eV (46)
Jj=1 a=1
However, since
l([ Y”j, Yb’])-a) — Lyu/.l.(Yln'),a) _ I'(Y"”v)'L),w'(U
=d-i(Y¥)-d (dD \Y'” - hy, (47)
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[ Y, Y¥]eV so that the b,’s are restricted by
7-baj =0 forevery YeV. (48)

The my , b, «, , are arbitrary save for the above con-
dition, as are the (m, —m, , ,)b,; witha>m;  , andj<K.
Thus, there are a total of

Mgy + (Mg —mg )+ o+ (my—my)=m;  (49)

independent and essentially arbitrary b,;’s; the rest of them
are determined by {45) to have the form

by = bl by by, by), a<m, ., and b>m, .

(50)

If some {dD |Y %) were zero, the equation correspond-
ing to Eq. (45) would give b, 7 +1 = 0, in which case one is
dealing with what corresponds in gauge field theory to a
global, as compared to a local, gauge invariance. Here, we
call a local gauge generator one that involves arbitrary func-
tions of the time and a global gauge generator one that does
not. Examples of both are given in the Appendix.

aj

Vil. DIRAC’S CONJECTURE"

The discussions that have appeared in the literature of
the gauge transformations of generalized dynamics have
been based on a time-independent formalism similar to that
in Ref. 1. We can compare the basis for those discussions
with the present work by evaluating at one instant of time,
say ! = t,, some of the results derived above.

At any one given instant of time, the values of a smooth
but otherwise arbitrary time-dependent function and its time
derivatives are independent of each other. Thus, Eq. (33)
does not yield any condition restricting the values of the
expansion coefficients b, of basis vectors Z * of @|, for an
element G|, of ¥|, :

G|, =b,Z" b, Sx|{t,]>R, {51)

where each b, satisfies the restriction (48) but is otherwise
arbitrary. Also, there is no distinction at one instant of time
between global and local gauge transformations [see the dis-
cussion below Eq. (50)] since they are distinguished solely by
their time dependence.

Considerations of infinitesimal gauge transformations
within the time-independent formalism led Dirac to conjec-
ture that the generalization of the Hamiltonian on T *Q
should be modified through the addition of arbitrary combi-
nations of all of the first-class constraints, corresponding
here to the addition of ,,(dD | Y %) (or possibly
b,{(dD |Y¥) + b;$,) to D, with each b, (and b;) arbitrary.
Certainly, the dynamical function {the generalization on
T*Q o TQ of the Hamiltonian) is modified by an infinitesi-
mal gauge transformation at time z, through the addition of
an arbitrary infinitesimal linear combination of the first-
class constraints as determined by the action of a vector G |,
of 8|, on D:

L;D|, =b,(dD|Z"). (52)

Note, however, that the exterior derivative, which appearsin
the equation of motion, of some of the terms in the expansion
may vanishon S X {¢,}, so not all first-class constraints con-
tribute to a modification of the equation of motion.
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Dirac’s conjecture is equivalent to requiring that the
solutions of the equation of motion can be determined only
up to elements in @ (and not just its subspace ¥, as follows
from the arguments given in the present study). And, in fact,
at one instant z, of time, a consistent solution X may be modi-
fied by an almost arbitrary linear combination of the basis
vectors in @ since X is transformed under the gauge gener-
ator G = g with geT'S to X + €L, X, where € is small, and

LX—b,Z%V (53)
by Eq. {13). The arbitrariness is limited by the fact that the
expansion in (53) does not contain any generator Z * of a
global gauge transformation whose coefficient b, has zero
time derivative or, equivalently, that is determined by a first
class constraint (4D |Y) such thatd {(dD |Y ) = 0.

Thus, Dirac’s conjecture is correct in that, at one in-
stant of time, the dynamical function is determined only up
to an arbitrary linear (infinitesimal) combination of the first-
class constraints in the form (dD|Z*) or, equivalently, a
consistent solution X is determined only to within an (al-
most) arbitrary linear combination, with small coefficients
for elements of &/ ¥, of basis vectors in . However, to
achieve these modifications does not require one to alter the
equation of motion one bit: The result is contained within the
time-dependent formalism given above or that which would
be obtained from the time-independent formulation on 7 *Q
given in Ref. 1. That is, one need not add arbitrary time-
dependent linear combinations of the first-class constraints
to the dynamical function (or of the first class secondary
constraints to the generalized Hamiltonian on 7*Q ): The
proper combinations are already there.

Adding such linear combinations enlarges the group of
gauge transformations from elements of the form b, Z * with
the b ’s related by equations like (45) to elements of that
form with no restrictions on the b,’s. In general, this is dif-
ferent than transforming a global gauge generator, for which
the b,’s satisfy an equation like (45), to the corresponding
local gauge generator.

Dirac’s conjecture has resulted in numerous discus-
sions, based on a time-independent formalism, in the litera-
ture.”™'* Some of these are based on particular Lagrangians
and concern those gauge transformations that are called glo-
bal here.

Global gauge transformations can be considered to cor-
respond to that part of a local gauge invariance that is left
over after the imposition of a gauge condition. This explains
why Gotay and Nester,>*'%!? although their time-indepen-
dent study did not involve the distinction given here between
local and global gauge transformations, raised the question,
stated here in the language of the present work, of the phys-
ical interpretation of the mechanics—does one interpret a
system with a global gauge invariance as representing a sys-
tem with a local gauge invariance upon which a gauge condi-
tion has been applied, or not? This question is beyond the
scope of the present work, which is concerned only with
determining the gauge transformations, local or global, for a
given Lagrangian, and thus a unique physical interpretation
for the system described by that Lagrangian.

Some of this discussions in the literature have centered
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around specific Lagrangians. The gauge transformations for
two typical cases are calculated within the present formal-

ism, and discussed, in the Appendix. (The other class of such
specific Lagrangians is discussed in the Appendix of Ref. 1).

Vill. GAUGE TRANSFORMATIONS ON 7"Q AND 7Q

The relationships between the formulations of general-
ized dynamics on 7*Q & TQ, T *Q, and TQ are described in
the preceding paper.' That description and the notation used
there, with some modifications similar to that used in this
paper, provide the basis for the following.

A consistent solution X, of the canonical equation of
motion on 7 *Q is determined only up to elements in TM |
NTM. Thus, in the time-dependent formulation on
T*Q X R, gauge transformations are defined by the condi-
tions on their generators %, = { G| that each G| lie in

T_T,O be a canonical transformation; and satisfy

L; X.e TM ;0 TM . (54)

The projection G’ = (pr,, Xidg, )-G of Ge¥ satisfies
this equation for G,: The variation of G along the fibers of 7
Xid: Wy X R—M, X R is given by Eq. (14). Moreover, [Y,
X)eTW, for YeV. As pr,, Xidg, extinguishesin G only its
termsin ¥,, Lg.-X,€ TM .

Moreover, we may go the other way: Given a G, satisfy-
ing the above conditions, and a cross section ¢ of the bundle
rg: Wy—My, calculate (o, Xidg, )G, and carry it off
(oXid)Myg X R to Wy X R by using L; (X — X-o-pr)eV.
Thus, pr,, -¥ gives ¥ ,.

The relation between the gauge transformations on 7Q

and those on 7 *Q @ TQ s even easier to obtain. Because FL
is a diffeomorphism, the gauge transformations on W, X R
carry over directly, via pry, to N, X R, with gauge generators

G, = (pry, Xidg, )G (55)

on Ny X R. Notice that the generalized gauge transforma-
tions are restricted to the final constraint submanifold ¥
XR.

IX. SUMMARY AND CONCLUSIONS

Since consistent solutions to the equation of motion are
determined only modulo elements in ¥, any transformation
that changes a consistent solution X to X + Y, in which the
vector field YeV, is physically unobservable, like a gauge
transformation in gauge field theory. Nevertheless, the vec-
tor field ¥ alone does not generate a gauge transformation:
The motion starting at a point w(t,) generated by X and that
generated by (X + Y) diverge as time proceeds so, at a later
time ¢, the point w(¢ ) on the flow line of X is not, in general, on
that flow line of X 4 Y that began at wiz,), even though
X |, and (X + Y|, are defined as vectors in T, W,
Thus, to study the gauge transformations, it is necessary to
take layers of copies of TW, in time, thereby distinguishing
the point w in W, at time ¢, from the same point w in W, at
time ¢ #t,. Therefore, it is necessary to work with a time-
dependent formulation of generalized dynamics; and this al-
lows an obvious definition of gauge transformations.

A generator G of a gauge transformation in generalized
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dynamics is a vector field in IS that generates a canonical
transformation and satisfies L, X €¥. This definition is
more general than allowed by the discussions of gauge trans-
formations in the literature®®'*'%'* (which for instance do
not include the example in Sec. VI) since those discussions
deal only with the set of gauge generators that are connected
to V.

The value of the time-dependent formulation can be
seen by comparing Egs. (13) and (53): The former leads to
explicit expressions for gauge generators, for example, in
terms of m, arbitrary functions in Sec. VIB, whereas the
latter provides little information on g since the value of b, at
one instant of time is arbitrary. Furthermore, a time-depen-
dent formulation is necessary to distinguish global from lo-
cal gauge transformations since, in generalized dynamics, it
is their time dependence that separates the two classes.

The discussions in the literature of gauge transforma-
tions have been based on time-independent formulations of
generalized dynamics, and thus they do not involve that dis-
tinction, an omission that has led to some ambiguity. This
can be seen by comparing the worked-out examples in the
Appendix with the discussions in the original references.

The time-dependent formulation provides a precise
form, Eq. (52), for the basis of Dirac’s conjecture, but it also
shows that the conjecture itselfis not needed: The dynamical
function (or the generalized Hamiltonianon 7 *Q ) takescare,
with the proper time dependence, of those constraints that
are added to D according to (52). And carrying out the con-
Jjecture not only changes global to local gauge transforma-
tions; it would also decouple those gauge transformations
with coupled time dependences [see Eq. (45)].

APPENDIX

The gauge transformations for two typical cases that
have been described as problem cases in the literature are
calculated below. After the reference and the preliminary
calculation given as in the Appendix of Ref. 1, the conditions
on the gauge generator and the general form of the gauge
generator (with the ¢,’s being time-independent) are present-
ed. The calculation is followed by a brief discussion (in which
H,., denotes the Dirac generalized Hamiltonian on T*Q).
1. Cawley?

L=vu, +yz,

Wo=1{X0,2,D:, D, P> Vs U, U2,

w2 9. 9
dv, dv,  dv,
.4
Wep, —v,=0, p,=0,p,—v, =0 TW;: —,
dy
.0
W, z=0, TW;: —,
Ip,
, 4
W,:v,=0, sop, =0, TW;: —,
Ix
a d a a ad
T'=a| —+— | +—+yv—+6—,
(c?pz avx) o ax 7/o"'uy ay
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X’:Ai+vx_a~+u ﬁ_f.vzi_f_i

v, ax 9z ar’
a, B, and é independent of v,, @ =0, B=a, 6= Y
d a a . d d
G=c|— t4c¢) —+65—+6—.
Cl((?pz + avx> Flarto) dx dv, dy

The constraint {(dD |3/dp) is }z* and the resulting con-
straint in the form z is seen to lead in W, to a global gauge
generator involving the time-independent ¢, and c,. In this
case, the Dirac conjecture as clarified in Sec. VII would lead
at most to the addition of ¢ p, to the generalized Hamilton-
ianon T'*Q (H,., = p,p, + up,, where p, is an arbitrary
constant and u is an arbitrary function of the time, not p,
multiplied by an arbitrary function of the time.

2. Gotay,'? due to Nester

L= (1/(2x))2%,

ad a
W: X5 Yy x ,U‘,UV, TWJ'I y —
0= X0 ProPy Ve ) 0 dv, o,
., a
We:p.=0, p,—v/x=0 TWj —,
x
wi. d
Wy v,=0, sop,=0, T e
ad d d
T=a—+p3—+y—,
av, ﬁax Vay
ad d d
X=4—+v, —+—,
dv, T dx ot
ap ay .
—=0= y a=p, :0,
dv, o, By
o d ad J
G=p —+B——+c —.
v, ﬁax "oy
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Thus @ /dy, or the constraint p,, generates a global
gauge transformation, corresponding in the Dirac conjec-
ture toadding (dc,/dt )p, = Otothe generalized Hamiltonian
on T'*Q, H,., = up, with u arbitrary.

This example is similar to one due to Allcock,'" in
which L = xv;.
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Transient fields in dispersive media
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The problem addressed in this paper is the determination of transmitted and scattered fields
produced by a transient electromagnetic field incident on a three-dimensional body when the
body and the surrounding medium are allowed to be dispersive. Instead of decomposing the pulse
into its Fourier components, the solution is carried out in the time domain to take advantage of
marching-in-time procedures. Maxwell’s equations are suitably modified, and the reduction of
the problem to the solution of an integral equation for a single tangential vector field is adapted to
dispersive media. A simple conductor and a collisionless plasma are studied as examples.

PACS numbers: 03.50.De, 03.40.Kf, 02.30.Rz

I. INTRODUCTION

The properties of a medium that determine the propa-
gation of an electromagnetic wave, mainly the permittivity
and the conductivity, are a consequence of the average re-
sponse of the atoms in the medium to the local electromag-
netic field. Causality and inertia do not allow this response to
be instantaneous, so that the behavior of the medium de-
pends on the frequency of an imposed monochromatic field.

A transient field or pulse can always be decomposed
into its Fourier components and in principle we can limit
ourselves to the study of monochromatic fields. For broad-
band pulses this approach may not be practical, and in any
case the physical behavior of the pulse is more transparent in
the time domain. Also the marching-in-time procedures for
numerical solutions of integral equations, which are a conse-
quence of the principle of causality, may show advantages
over the solution of large systems of linear algebraic equa-
tions that arise in the computations for monochromatic
fields. Thus, we want to extend the solutions of scattering
problems in the time domain to dispersive media.

In particular, we have shown' how the fields scattered
by and transmitted into a dielectric can be obtained from a
single tangential field defined on the surface of the scatterer.
This field obeys a (weakly) singular integral equation of the
first kind. This theory applies to transient fields for media of
constant permittivity € and permeability i, and to mono-
chromatic fields in media that can be dispersive and that can
have a finite conductivity o.

In this paper we examine what changes have to be intro-
duced in the time-domain formulation to find the scattered
and transmitted fields produced by an electromagnetic pulse
incident from a region ¥, onto a conducting body occupying
aregion V, bounded by a surface S. We allow the properties
of the two media to be functions of frequency, but not of
space within each medium, and we assume that they are
constant in time. To avoid unnecessarily complicated equa-
tions, we assume that the magnetic permeability differs by a
negligible amount from that of free space, y,, an assumption
that holds in most instances.

In Sec. II we introduce the modifications of Maxwell’s
equations that allow for dispersion, and we express the elec-
tromagnetic fields in terms of their initial values and the
jumps on the boundary by means of Green’s function for the
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related scalar wave equation. In Sec. III we discuss the ele-
mentary solution of the scalar equation and give two exam-
ples, a simple conducting medium and a collisionless plas-
ma. We sketch the derivation of the integral equation for the
conductor in Sec. IV, and we examine the plasma problem in
Sec. V. We leave for an Appendix the proof that the elemen-
tary solution for the simple conductor satisfies the correct
equation, and the derivation of some convolution products.

We use the notation developed in Ref. 1, and we borrow
from that paper those derivations that apply essentially un-
changed to this problem. We stay with the theory of distribu-
tions to provide a good mathematical foundation to this dis-
cussion.

Il. TRANSIENT FIELDS IN DISPERSIVE MEDIA

The form of Maxwell’s equations that is valid for distri-
butions and includes initial and boundary conditions is

V-D =p + 4 (#-D)8(S), 1

(
(

)
V-B = 4 (#-B)5(S), 2)
VXE + B =4 (AXES(S) + Bys(t), (3)
VXH —D=j+4(AxHS(S) — D), (4)

where B, and D, are the values at the time ¢ = O of the corre-
sponding fields, the coefficients of the singular distribution
6 (S') are the jumps of the tangential or normal components of
the fields across S, and the sources p and j may include singu-
lar terms. The equations for monochromatic fields can be
obtained by replacing the time derivatives with multiplica-
tion by — iw and eliminating the initial-value terms. We
assume that the constitutive relation between B and H re-
mains unchanged from the one in free space,

B =u,H. (5)

When the permittivity is a function of the frequency of a
monochromatic field, we can write,” for a linear, uniform,
isotropic medium,

D, =¢€,E,. (6)
The permittivity has the form
€, =€/l + x,h (7)

where ¢, is the free-space permittivity and y, is the suscepti-
bility, which tends to zero as w tends to infinity.
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If we express transient fields in terms of their Fourier
components,’ Eq. (6) leads to

D(x,t) = eO[E(x,t) + r)( (¢ E(x,t — t')dt ] (8)

where y (t) is the Fourier transform of y,, divided by 2,
that is,

1 .
= — —_ N 9
Xty =— L _daxy., expl —iot) (9)

The electric field is a free field, while the displacement vector
includes the effects of the medium; causality restricts the
integralin Eq. (8)tostartat ¢’ = O and the value of D at time ¢
does not depend on values of E at later times. The decompo-
sition of €, in Eq. (7) allows for the definition of y (¢ )in Eq. (9)
in the sense of functions. For distributions, we can rewrite
Eq. (8) in the form

D = e+E, (10)
where the distribution € can be {informally) represented by
€ = €y[8(z) +X(t)]6(3'(x)§ (11)

causality then implies that € vanishes for # <0.

When the electromagnetic field for positive ¢ is given in
terms of the initial values at z = 0, it is mathematically con-
venient to assume that the field vanishes for negative ¢ and
has a jump equal to the initial value at ¢ = 0. This does not
imply that the physical field vanishes for negative ¢, and we
cannot determine D, from E, since D, depends on earlier
values of E as seen from Eq. (8).

We assume now that there are no free charges in the
medium, and that the current density is given by a general-
ization of Ohm’s law to a dispersive medium,

j=o*E. (12)

We substitute Egs. (5), (10), and (12) into Eq. {4), which be-
cormes

VXB — y*E = 4 (AXB)6(S) — 1 ,Dy6 (1), (13)
where
¥ = pol€ + o). (14)

We now solve these equations by means of the elemen-
tary solution of the associated scalar equation, which satis-
fies

2% — V295 = 6. (15)
Incident fields are defined by the initial values D, and B,
given in a homogeneous region, with no discontinuities at .S,
and they can be expressed by

E" = 11,G «Dyd(t) + V.5 + X Bed(t), (16)

B" = yxZ «BS(t) — po VI *XDS(t ). (17)
The initial values D, and B satisfy the constraints (1) and (2);
that is, these fields are solenoidal. The incident fields are
obtained from the initial conditions without solving any
equations, essentially by integrations, and we consider them
as known quantities. Fields & and # that vanish initially
and have jumps ¢ = A& andm = A% across S are given by

= — VG *-dS(S) + VI X (AX SIS )

— G *xiXnb(S), (18)
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B = —VI*amb(S)+ VI Xx(AXM(S))

+ y* G *AXS(S). (19)
Substitution into Eqgs. (1}, (2}, (3}, and (13) shows with the
help of Eqs. (10) and (15) that the fields given by Eqs. (16)-
(19) satisfy Maxwell’s equations, provided that the jumps
satisfy

Virfed = — Ve X, (20)

A = Vs X, (21)
where y, and the convolution in Eq. (20) are restricted to the
time variable. These last two equations determine the nor-
mal components of the jumps across S in terms of the tangen-
tial components when the jumps vanish initially; they are a
consequence of Egs. (3) and (13) when applied to the fields on

both sides of S, and the surface divergence comes from the
relation

1V Xu= — Vg(fixu). (22)
The general procedure to solve the scattering problem is

the same one used for nondispersive media in Ref. 1.
Equations (18) and (19) are rewritten in the form

& =L{ax$] + M{Axq], (23)
# =L{Axn] + M'{AxX$}; 24)

that is, the fields, & and A4 are functionals of the tangential
components of their jumps across .S, as the normal compo-
nents can be eliminated by means of Egs. (20) and (21).

We define two sets of auxiliary fields that obey a single
set of equations both in V| and V. The fields E, and B, are
equal to the scattered fields in V| and obey the equations for
the medium 1 also in V7; the tangential component of E, is
continuous across .S and the jump % X in # X B, is our one
unknown tangential field. The fields E, and B, are equal to
the transmitted fields in ¥, and vanish in V/,.

Equations (23) and (24) give

E, =M, {ixXn}, (25)

B =L, {AXn]{, (26)
where the index on the functionals refer to the mediumin V.

The jumps in 7 X E, and 7 X B, are equal to the bound-
ary values of 7 X E and 72X B in V,, related to those in V|, by
the physical boundary conditions; that is, the continuity of
AXE and AxB across S. Hence

A(AXE,) =haXE" + AXE, _, (27)

4(AXB,) =AXB" + AXB,_, (28]
where the subscript 1 — refers to the boundary values of E,
and B, in ¥,. These jumps are thus determined by 7 X 1) via
Eqgs. (25) and (26}, and we can write E, and B, in terms of
nX" as

E;, = L,{4 (AXE,)} + M,{4 (2 XB,)}, (29)

B, = L,{4 (i XB,)} + M} {4 (A XE,}}. (30)

We obtain the integral equation by imposing the condi-
tion that these fields vanish in ¥;; in particular, we set

AXE,_=0. (31)

The precise forms of the functionals and integral equation
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depend on the properties of the medium, and we give some
examples below.

IIl. ELEMENTARY SOLUTION OF THE SCALAR
EQUATION

The solution of Eq. (15) is well known* for a simple
dielectric, where o = 0 and € is independent of frequency;
the result is usually written in the form

G o= 6(t — r/v)/(4mr), (32)
where the speed of propagation of the wave is

v = (eue) "2 (33)
The support of this distribution is the forward light cone.

In general, the elementary solution depends on the
properties of the medium. We can assume frequently that the
elementary solution is a tempered distribution that has a
Fourier transform %" (k,»). Then Eq. (15) reduces to

[k* —(@°/cH)1 + x,, +i0,/€w) |7 (ko) = (27) 7,

(34)

where ¢ is the speed of light in free space. The problem of
finding the primitive of ¥~ with respect to the space varia-

bles gives the elementary solution of the Helmholtz equa-
tion, and we can write

G = (17227 *nTF _(e™"), (35)
where « is the square root with the positive real part for
positive @ of

K2 = #O(wzflu + i{uaw ) (36)

The distribution & will in general be singular, as we can see
from the examples in Eq. (32) and others. These distributions
can often be expressed as derivatives of functions, such as

- 2(27;}3/2r %t?_(w: ie)’ €0+ (37)
If k = w/v, we obtain, in terms of the unit step function 6,
Fo= 2(2771)3/% g?[ —i2n)'"e (t_ f)] (38)
which leads back to Eq. (32).
The relationship
F _[T(w+ia)] =exp(—at)¥ _[T(w)] (39)

suggests that an imaginary term linear in o in «” as given by
Eq. (36) leads to an overall damping factor, as can be seen in
the case of the simple conductor.

The convolutions involving ¥, can be reduced to pro-
ducts of the Fourier transforms, where that of ¥, is (up to a

factor 27),

?’w = IU'O( - iw6ru + g, )' (40)
Thus, in principle, we can solve Eq. (20) for 7+¢ if we write
A 1 fm 7~7w — Qwt
abx,t) = —— do —e ', (41)
Mad Em'J . v,
where
- 1 J‘ - o .
o = ——— | dtVg-AaXn(x,t)e . 42)
77 (277_) 1/2 N S 1]( ) (

The lower limit of the integral is O because q vanishes for
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negative times; we can thus assume that 7,, is analytic in the
upper half of the w-plane and tends to 0 as w— oo . The func-
tion 7+$ has the same properties as 4 Xn, which imposes
restrictions on the form of y,,.

IV. THE SIMPLE CONDUCTOR

We consider in this section a medium that has constant
permittivity and conductivity. Even when these quantities
are independent of frequency, there is dispersion due to the
losses in a conducting medium. The physical requirement
that the effects of the medium become negligible in the high-
frequency limit is not satisfied, but this approximation is
good for slowly varying pulses and is relatively easy to study.

The resulting equation is known as the telegraphist’s
equation (A1), and the elementary solution is usually ex-
pressed in the form®

G(x,t)= exp( — _‘Zf) l—-——é(t —r/v)

2e 47r
a

8mev(t? — r*/v?)'?

XI,[M} 9(z - f)] . (43)

2e v

where I, is the modified Bessel function. In the Appendix we
give a formal definition of this distribution and, following
the procedure used in Ref. 6 for the wave equation, we show
that it satisfies the telegraphist’s equation. We also derive
there the appropriate convolution products, which allow us
to write the functionals in Egs. (23} and (24) as

L{Ax 6| = ‘%PfﬁdS’ eXp( . Eﬁ)[;,'x(“’m

T 2¢ev v

L2 ¢ren>]x_R_+v><I{ﬁ><¢],

2¢ev R R’
(44)
M[ﬁxn} = _1._P§dsfexp(_ g_@_)[ﬁy.((bret
4 Us 2ev v
+ U¢rel ¢rcl ) R _ fl'X‘v']m ]
2ev R /R? R
+ VI {A-b} — I{AXn0], (45)

n ret

o 1 ’ R A
M'{aX o} = zz"ids e"p(— Z_)[ ( ;

LT e ) R (%*ﬁ'x‘ﬂg]
2ev R /R? R
+ VI{Aam] 4+ Ly *AxXd}, (46)

where the functional 7 comes from the second term in Eq.
(A22) and is defined by

o * ot’ , R -2
I = dS’f dt' ex (— —)(t’-———)
{5 } 877'6U£ R /v p 26 U2

0'([ Z_RZ/U2)I/2 ]g(x”t—t,)’ (47)
2e
and 1 is obtained from I by replacing & by &.
For the simple conductor, the convolution product in
the time variable of the distribution y, as given by Eq. (14}
and a surface field £ is

VorE = po€€ + oot (48)

a
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We then can find 7+ in terms of # X 7 from Eq. (20) and /-y
in terms of 7 X ¢ from Eq. {21) by integration; all of these
fields vanish for <0.

The only terms in the integrands that become singular
when the field point x is on the surface S are those that are
proportional to R/R 3, since the surface element has a factor
R. The exponential factors become 1 when R—0, and the
discontinuities of the fields are the same as those found for
the simple dielectric; that is, the boundary values of the fields
in ¥, and V;, are related to the fields on the surface by

£, =116+, xeS, (49)
B, =+n+ B, xel {50)
The solution of the scattering problem proceeds as out-
lined in Sec. III. In particular, the jumps in the fields 7 XE,
and A XB, in Egs. (27) and (28) are
A (AXE,y) = AX(E" + M, {AXn}), (S1)
4 (AXB,y) = AX(B" — i + L,{AXn}), (52)
and the integral equation {31} becomes
AX (M, — L,M, + IM, — M,L,}{/i X7}

+ AX(E™ — L{AxXE™} — M,{AXB"})=0, (53)
which has the same form of that for the simple dielectric
when we set to 1 the ratio a of the permeabilities of the two
media. Once this equation is solved for 7 X the scattered

fields are given by (25) and (26), and the transmitted fields by
(29) and (30).

V. THE COLLISIONLESS PLASMA

Another relatively simple example of a dispersive medi-
um is that of a plasma that has a vanishing conductivity and
a permittivity given by

€, =€l — Wl /0?), (54)

where w,, is a constant called the plasma frequency. We sub-
stitute €,, into Eq. (36) and obtain

K =1/ — @) (55)
The susceptibility y,, = — w;/w tends to 0 as — o, and
in the time domain we can write
x(t)=wltb(t), (56)
whence
Y = Ho€o[O(t) + 0} 6(2)], (57)
and the elementary solution &% has to satisfy the equation
1 3% .
= —~VG + L% =5 58
¢ or? * c? 38)
The solution of this Klein-Gordon equation is given by’
Dixt) = Ot —r/c) o,
4mrr 4mre(t? — P/ 2
XJ,[w,(t? — r*/c})'?]6 (l - 5), (59)
¢

where J, is a Bessel function. The form of this elementary
solution is essentially the same as that for the simple conduc-
tor without the exponential damping. The formulas in the
Appendix and many of those in the previous section apply
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mutatis mutandis. For instance, the functional I becomes

Ifg)= - = 3€ds' dr’
47TC S R/v
J[w,t? —R?/c?)'?]

TR 7S

The convolution product by Eq. {57) becomes
oo = x) + 0} [ dr’ i) i61)
Q

and we can solve Eq. (20) either via Eq. (41) or by solving the
simple second-order differential equation

Lo€olfied + @2 fed) = — Vgn X, (62)

obtained from Eq. (20} by differentiation with respect to
time.

VI. CONCLUDING REMARKS

We have shown that the formalism we developed in
Ref. 1 for the scattering of electromagnetic waves by a simple
dielectric body applies essentially unchanged to conducting
and dispersive media. All of the calculations can be carried
out in the time domain if the elementary solution of the sca-
lar equation and the distributions € and o can be found expli-
citly from their Fourier transforms.

The examples of the simple conductor and the collision-
less plasma discussed in Sec. IV and Sec. V show that, in
addition to the functions of the retarded time evaluated at
7 =1 — R /v, we have to carry out integrations over a range
of arguments of the function from O to 7. The actual range
may be reduced due to the damping factor for the conduct-
ing medium.

We have limited our discussion to electromagnetic
fields, but the same ideas can be applied to other types of
waves in dispersive media. Also, variations on the method
presented here, such as the use of dyadic Green functions,
lead to similar kinds of procedures.

Actually, any other theoretical or numerical solution of
wave problems carried out in the time domain can in princi-
ple be extended to dispersive media without first going
through the solution of the problem for a monochromatic
field.

APPENDIX

The elementary solution of the telegraphist’s equation
satisfies

Lol +0%)— V2% =8, (A1)
This solution is the distribution defined by

(% .p)= J:Cdt vt exp( — 527—:)6 (vt r)
02 S

_+_
4e*y Jy

2 B ot _
rdr Ludt exp( - z—e)f (&)@ ire),
(A2)
where v = (euy) 7 1/%, £ =(0/26)(t — /)2,
S =16/, A3

I, is the modified Bessel function, and @ is the average of the
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test function @ over a sphere of radius 7; that is,

glnt)= 1 %dﬂ @ (X,1). (A4)
45
Differentiating with respect to ¢, we find
dp _dp Fo _ Ip
o a ar ar
We use Gauss’s divergence theorem on a sphere of radius # to
derive

jdVVng =
v sin

f " dr ffd.() Vo=r2 §d0 o (A7)
4] ar

and, taking derivatives of both sides with respect to r, we
conclude that

(AS5)

dS-Ve, (A6)

Vg = V. (A8)
We now show that ¥ satisfies Eq. (A1). We have
A={pe¥ +0%)- V% p)
= (G polep —0¢)—Vip), (A9)

which, by Egs. (A5) and (A8), becomes

82
oo - Dl
A= Tarvtrexp — Z)ufe e

35) z—]
—o%%) vy
Uat ¢J 7= ur
02 o
rar | dresp( - Z)
4€2U 0 g riv texp j(g)
T B\ o
X - \&Z ] A
[”O(E o1 Uc?t) .
We note that
aa(vz,t)z[v Bnt) aﬁ(m)] , (A11)
It ar ot r=ut
d{1d,_. 4 _]
dt[v at(r¢) af'(w) r=u
o [ 1 &g —

and integrate by parts to rewrite the first term in Eq. (A10)

A= [Tarexs( - Z) 2L L) - Zup)|

v ot

N I
— 2l dte ( — g~)t %
’ Ocero P\ 7 2 o

=ut

- [L25)- 2p) 7
= [uat(r‘p) pRC) .
ot\[. dp &?7}
- = d _.___)[[__
v oo - LT +oruE]
=F(0,0)— —f dtexp( ‘”)[zdﬂ’” ) +¢(vt,t)]
2e dr

= @(0,0) — Z?J; dt exp( - 5;)@ (ve,t). (A13)

We also integrate the second term in Eq. (A10) by parts to
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obtain

tom 2 [ e S [ 228
F7(¢E) Eaf(g) e
TR T r o e (g‘)]
5 [l - Z)l(5 o
A GIRE L A

v J‘W ( ot
— | dt e I

+ 4€e? Jo cxp 26)

X [ d @tt) — UV(O)ET,l ]
ar £=0 orl, -y

= 16‘2 3.[0 rzdrf dtexp(— —)g)( )( d;{

+%%— ) fdtexp( 0)2
(12 )

= %J; dt exp( — Z)t@ (vi,), (A14)
where we have changed orders of integration and variables

of integration, and we have used the properties of #({ ), de-
rived from those of Bessel functions,

I+ 35V —F =0, (A15)

0=, FEVE o =4 {A16)
Thus,

A=A, +4,=¢(00)= (5¢), (A17)

which concludes the proof.
To find the convolution products we rewrite Eq. (A2)in
the form

o= foreiito )

2ev

o [av [ aress( - Z)riigima
(A18)

and recall that a singular distribution on a surface §'is de-
fined by

(8IS ) ) = f " fﬁdsg ()0 (x,1).

By the definition of the convolution of two distributions we
have

(F*E8(S ) )
_ gy expl=0r'2e0) [
= de P J dt fﬁdSé'(x,t )

jd V' f dr’
ot’
Xexp( — ——~—)/(§) f dt § dSé(x,t)
2e Cw s
X@x +x',t + 1), (A20)
and we change variables of integration from x’ and ¢ to

4+

(A19)

X @ (x,X'),t + ¥ /v) +
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x"=x+xandt” =t+t', wheret’' = r' /v in the first
term, to obtain

(F*£6(S).p)
=f°° dr” de” §dS exp( — olx" — x|/2ev)
- s 4r|x" — x|
X& (x” —xt" - I’ —x v— x )¢7 (x",t")

0_2 oC
+ - dt " deII
167ey J‘N w

><§)deeo dt’ exp( - ﬁ)/(g)
N |x" —x|/v 2¢e

XEXE" — 1) (x",1"). (A21)

We thus find that

GE5(S) = idS' exp( — oR /2ev)¢ (x',t — R /v)

47R
b |

+ ds’ dt’
167e’v Js R /v

ot’ , , ,
xexp( - -Z;)J@ E(xt— 1), (A22)
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where R=x —x', R = |R|,and {' = (0/2¢)

X (¢ — R 2/v*)"/% The first term is the same one obtained
for the wave equation with the addition of the exponential
damping factor. If £ vanishes for negative times, the time
integration in the second term extends from R /v to ¢ only
and the same exponential damping term appears, which
further limits the contributions to this integral.

'E. Marx, J. Math. Phys. 23, 1057 (1982).

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media
(Addison-Wesley, Reading, MA, 1960), p. 247 ff.

E. Marx and D. Maystre, J. Math. Phys. 23, 1047 (1982). We note that Eq.
{A47) in this paper is missing a factor of y27 on the right-hand side. We
also recall that the convolution product is not necessarily defined for two
arbitrary distributions.

“There are many heuristic derivations, and we have given a rigorous deriva-
tion in Ref. 3.

*P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-
Hill, New York, 1953), p. 868 and p. 856.

SL. Schwartz, Mathematics of the Physical Sciences (Addison-Wesley,
Reading, MA, 1966).
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The systems-theoretic concept of controllability is elaborated for quantum-mechanical systems,
sufficient conditions being sought under which the state vector ¥ can be guided in time to a chosen
point in the Hilbert space #” of the system. The Schriodinger equation for a quantum object
influenced by adjustable external fields provides a state-evolution equation which is linear in ¢
and linear in the external controls {thus a bilinear control system). For such systems the existence
of a dense analytic domain %7, in the sense of Nelson, together with the assumption that the Lie
algebra associated with the system dynamics gives rise to a tangent space of constant finite
dimension, permits the adaptation of the geometric approach developed for finite-dimensional
bilinear and nonlinear control systems. Conditions are derived for global controllability on the
intersection of &7, with a suitably defined finite-dimensional submanifold of the unit sphere S ..
in /7, Several soluble examples are presented to illuminate the general theoretical results.

PACS numbers: 03.65.Bz, 02.20.Sv

I. INTRODUCTION

This paper is devoted to a formal investigation of the
controllability of quantum-mechanical systems. Such a
study is ultimately motivated by the importance, or potential
importance, of precision methods for influencing the dyna-
mical behavior of microsystems, in such diverse contexts as
particle acceleration and detection, plasma physics, magnet-
ic resonance, electron microscopy, modern solid-state tech-
nology, laser fusion, and optical communication. On the one
hand, we may be interested in governing the time develop-
ment of certain pertinent average quantities. More ambi-
tiously, we may wish to guide the quantum state itself. It is
this latter type of controllability which concerns us here.

A. Probilem formulation

Consider a physical system whose state #(t ) evolves
with time according to the law

%wtr)=ﬂn¢m+ S wl W), W0 =¢,, (1

f=1
where 1 is a point in some abstract state space, Hy,H ,....H,
are operators in this space, and the #,(¢ ) are time-dependent
scalar control functions. For the case that H,,H,,....H, are
linear operators, we say, in systems-theoretic parlance, that
{1} is a bilinear system' since the last term is simultaneously
linear in the state ¥ and the controls ;. The formulation (1)
includes as a special case the dynamical law followed by a
pure state in quantum theory, i.e., the Schrodinger equation

g =g+ 3 wioni| ve), 2
dt =
where H,H |,...,H | are linear, Hermitian operators in the
underlying state space % of the quantum-mechanical sys-
tem and the u, are real functions of ¢. The operator H
==i#iH, is naturally interpreted as the Hamiltonian deter-
mining the free evolution of the quantum system, while the
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u,H [=itu H, represent its couplings or interactions with
certain external agents. Through suitable adjustment of the
c-number controls u,(t ), these interactions may be used to
guide the state ¥t je".

One may also entertain /inear control systems, such
that none of the controls u, appears in the same addend with
the state ¢, as well as nonlinear systems of the form (1) but
with one or more of the operators of { H,,H,] nonlinear.
However, these cases are of no immediate relevance to con-
ventional quantum mechanics.

In general, the quantum-mechanical state space #” is
an infinite-dimensional Hilbert space. Although the H,, if
not H,, could in principle depend on ¢, we shall confine our
attention to the case that all these operators are time-inde-
pendent. We further suppose that the u, are piecewise-con-
stant functions of ¢, the intervals of constancy being denoted
[t ), i integral. Under the stated conditions, the exis-
tence and uniqueness of a solution () between successive
switching times #, and ¢, , , is guaranteed by the assumed
gquantum dynamics. During the prescribed interval,

H, + 3,u,H, is a constant, skew-Hermitian operator. Pa-
tently, there is associated with that operator a unique unitary
operator U (¢, t;), parametrized by ton [¢,, ¢, , ), with the
property U (¢, ¢, )¥(t;) = ¢(t ),where U (¢, t;) = E (identityop-
erator). One may therefore proceed to patch together the
solutions for the separate intervals to obtain an acceptable,
continuous solution #(z ), over the full range teR ™.

Now, a differential system such as (1) is said to be con-
trollable if, given two states ¢, and ¢, , there exists a time
interval [0,z,] and a set of admissible controls «,(z) (in our
case, piecewise-constant controls), such that the system tra-
jectory beginning at ¥(0) = ¢, develops under the influence
of u(t ) toarriveat (¢, ) = ¥,. This concept has become one of
the touchstones of mathematical systems theory,” a disci-
pline deeply rooted in classical dynamics. It is our purpose to
introduce the controllability concept into the quantum do-
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main and explore its limitations in that more fundamental
setting.

B. Relevant prior work

In recent years substantial progress has been made,
based in part on the seminal work of Chow,* toward under-
standing continuous-time finite-dimensional bilinear and
(certain) nonlinear systems.'*~*' However, the quantum
control problem is intrinsically infinite-dimensional. Thus
the advances made in Refs. 1 and 4-21 cannot be applied
directly to the problem of guiding quantum states—except
in idealized situations where the state space becomes finite-
dimensional (as when only spin degrees of freedom play a
rolej.

Infinite-dimensional bilinear and nonlinear control sys-
tems have not been extensively investigated, although sever-
al pioneering efforts deserve note: (i) Both Koch? and
Brockett™ have addressed the problem of realization of infi-
nite-dimensional bilinear systems. (ii) Stefan®* has obtained
results on local integrability of a special class of infinite-
dimensional control systems. (iii) Ball and Slemrod® have
established criteria for local stabilization of infinite-dimen-
sional bilinear systems. (iv) Hermes?**” has determined suffi-
cient conditions for local controllability of nonlinear delay
and infinite-dimensional nonlinear systems.

To the authors’ knowledge, very little has been pub-
lished on the controllability of quantum systems per se. As a
preliminary to the present work, Tarn, Huang, and Clark®®
have explored the formal basis for the modeling of quantum-
mechanical control systems by appropriate Schrodinger
equations. Earlier, Butkovskii and Samoilenko?®*° dis-
cussed the control of quantum objects in broad terms and
laid out a framework for further studies; a number of enlight-
ening examples were treated, but mathematically definitive
results were not presented. Recently, these last workers have
announced general conditions for controllability of pure
quantum states.*' However, these findings must be viewed
with some caution, since results for finite-dimensional bilin-
ear systems were taken over from Refs. 11 and 12 without
due attention to the domain problem for the relevant opera-
tors in Hilbert space.

C. Epitome of present approach

In the present contribution, we shall deal with the do-
main issue for the operators involved in quantum control—
which are generally unbounded operators—by appealing to
certain fundamental developments due to Nelson.*>** That
is, we shall pursue our analysis with respect to an analytic
domain of the Hilbert space: a dense domain invariant under
the action of the given operators, on which the solution #(t )
of the Schrédinger equation can be expressed globally in ex-
ponential form. The existence of such a domain (in some
interesting situations) is guaranteed by a theorem of Nelson.
Against this underpinning, we are able to extend the geomet-
ric approach as implemented by Sussmann and Jurdje-
vic,'%!! Krener,'* Brockett,'® Kunita,'® and others (who are
concerned only with bounded operators) to establish a series
of global controllability conditions for the quantum case. It
will be seen both formally and intuitively that, within the
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assumed framework based on piecewise-constant controls,
global controllability on an infinite-dimensional submani-
fold of Hilbert space can never be attained in a practical
sense: In general, a desired goal in the state space cannot be
achieved with a finite number of manipulations of the con-
trol set {#,{t}}. Accordingly, our detailed considerations re-
garding global control are narrowed to situations in which
the Lie algebra &7 of the operators entering the quantum
version of (1) yields a tangent space of constant, finite dimen-
sion.

Indeed, if we have to appeal to Nelson’s theorem to
assure the existence of an analytic domain, then we are al-
ready dealing with the following situation. The quantum sys-
tem is one described by a finite-dimensional Lie group 7,
which is represented by unitary evolution operators on a
Hilbert space 5. The control system—a bilinear system
whose states are in J#"-—has the property that its associated
Lie algebra is contained in the Lie algebra of operators on #°
obtained from the unitary representation of I". This specifi-
cation is admittedly quite restrictive; therefore, it is not sur-
prising that, with minimal attention to the infinite dimen-
sionality of ¥, we can bring to bear the techniques
introduced for finite-dimensional manifolds in Refs. 10, 11,
14, 16, and 19. One may expect essential differences between
finite-dimensional and infinite-dimensional problems to sur-
face as one goes beyond the case of analytic vectors as initial
conditions. The next step beyond analytic vectors and to-
ward a less restrictive physical setting might involve *“infi-
nitely differentiable vectors”—those vectors of % for which
the orbits are infinitely differentiable functions of the group
parameters.

We hasten to point out that the above specification cor-
responding to Nelson’s theorem does include the physical
example of paramount importance in engineering applica-
tions, namely, the harmonic oscillator with coupling to ex-
ternal classical fields.

D. Organization of the paper

This paper is divided into six main sections. In Sec. 11
we collect certain key ideas and terminology from manifold
theory and Lie algebra which are instrumental to our analy-
sis of the control system (1) in infinite-dimensional space.
Section 11T surveys the existing results on controllability for
a finite-dimensional state space. In Sec. IV we introduce the
concepts of analytic domain and analytic controllability,
consider the implications of Nelson’s theorem, and present
arguments to the effect that, on an analytic domain, the con-
trollability results obtained for a finite-dimensional state
space can be extended to the quantum problem posed in Sec.
IA. In Sec. V some examples are given to illustrate the con-
cept of quantum controllability and the general findings of
Sec. IV. We conclude, in Sec. VI, with a brief prospectus of
outstanding problems in the largely unexplored intersection
between quantum mechanics and mathematical systems the-
ory.

. MATHEMATICAL PRELIMINARIES

In general, the states of a quantum system are repre-
sented by vectors (or functions) in an infinite-dimensional
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space. With this in mind, we shall outline the essential mani-
fold and Lie group theory appropriate to a Banach space. It
is assumed that the reader has some familiarity with differ-
entiable manifolds in the finite-dimensional context. In set-
ting up the necessary catalog of concepts, we shall adhere
closely to the conventions of Refs. 34-37.

A. Atlases and differentiable manifolds

As in the finite-dimensional case, the concept of atlas is
introduced as a first step.*>>® An atlas of a set M is again a
collection of charts (U, ,@;), with u,U, = M. But now the bi-
Jjective map g, is from the subset U, of M onto some open
subset of the Banach space &, and for every pair i, j the set
@,(U,nU;) is open in & . The atlas is said to be of class C 7 if
the mapping ;o9 ;' @,(U,nU; )}, (U;,nU;) is of class C?.
(The cases ““C = and “analytic” are specified analogously.)
ForpuelU; CM, the point ¢, ( u)e€ is the representative of u in
the chart (U,,p;).

The next step is to define a C # (-differentiable) manifold
modeled on &, as a set M together with an equivalence class
of C ? atlases modeled on &. An equivalence relation is pro-
vided by the notion of compatibility: Two C ? atlases on M
are compatible if their union is another such atlas. (To define
C ~-differentiable manifold and analytic manifold, proceed
analogously.)

An example may be helpful at this point. Let the set M
be L }R"), let the U, be open subsets of M with union equal to
L 2(R"), and let @, be the identity mapping. Then clearly M is
a C ~-differentiable and analytic manifold modeled on itself.

B. Tangent vectors, tangent bundles, and vector fields

Equivalent definitions®® of tangent vector to M at point
4 may be given (a) in terms of an equivalence class of curves
and (b) in terms of the behavior of the representative of the
object in question, under a change of charts.

Here we shall give explicit expression only to concep-
tion (a).

Definition: A parametrized curve y on M is a mapping
from JCR into M via red—y(t JeM.

Consider all differentiable curves y: J C R—M such that
#(0) = ueM. We shall regard ¥, as equivalent to 7, if in some

chart (U,p) (consequently,*>~® in every chart) we have
d d
e O ——— [o]
dt (¢j 7/1) t=0 dt (¢ 72) t =0

Definition: A tangent vector at . to the manifold M,
denoted X i or X ( i), is defined by any one such equivalence
class. The set of all such equivalence classes constitutes the
tangent-vector space to M at i, denoted 7, (M). The vector
v, =d (poy)/dt|,_ , is termed the representative, in the chart
{U,p), of the vector tangent at u to curve y.

One may establish® that 7, (M) is isomorphic to & and
accordingly has an intrinsic vector-space structure.

Definition: The tangent fiber bundle T(M) is given by
Uem? (M.

It is important to note*>-*® that T(M) has the structure of
a differentiable manifold modeled on & X & . Further, T(M)
has a fiber bundle structure characterized by base M, projec-
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tion i p,X p)—u, typical fiber &, and structure group
GL(&).
We are now equipped to formalize the idea of vector
field for the case of an infinite-dimensional state space.*®
Definition: A vector field X on a C * {respectively, C = or
analytic) manifold M is a cross section of the tangent bundle
T(M), by which we mean a class-C? ' (respectively, class-
C= or analytic) mapping X: M—T(M), namely, X:
p—( 12, X p), such that 70X is the identity.

C. Submanifolds, tangent subbundies, and integrability

Let M be a C # manifold, p>0, and consider a subset
N C M which still has C ?-manifold structure; then N will be
called a submanifold of M. {The definition of a C  or analyt-
ic submanifold runs parallel.) Between N and M there are
some natural connections established by mappings (e.g., in-
clusive mappings). A thorough discussion is contained in
Ref. 35. The tangent-vector space of N at 4 is a subspace of
", (M), the latter being, as we recall, an isomorphism of the
Banach space %. We can decompose & into Banach spaces
&, and &, according to & = &, X &,, where X indicates
the Cartesian product and .7, (N) is an isomorphism of %,.
The relationship of N to M can also be framed in terms of the
tangent mappings’>"’ .7 ,i: 7, (N}>5, (M) and Ti:
T(N}—T(M) induced by the inclusion i: N—>M.

Next there arises the notion of tangent subbundle (a
subbundle of the tangent bundle over M). For details, see
Refs. 35 and 36. A tangent subbundle corresponding to the
submanifold N is specified in the same fashion as T(M), with
N playing the role of M. But suppose, on the other hand, that
we are given a tangent subbundle structure SC T(M), and
asked to determine whether or not there exists a submani-
fold—again call it N—which has tangent bundle S. This is
the integrability problem. A simplified definition of integra-
bility follows.

Definition: A tangent subbundle S over M is said to be
completely integrable®® at a point €M if there exists a sub-
manifold N of M containing g, such that the tangent map
induced from the inclusion /: N-»M has the property that for
eachveN, thetangentmap.7 .i:.7 {N)}—.7" (M}isatopolo-
gically linear isomorphism of .%"_(N) on ./ (N).

We state a version of Frobenius’ local existence
theorem which gives conditions on S guaranteeing its inte-
grability.”’

Theorem 2.1 (Frobenius): With M and S respectively a
manifold and tangent subbundle as above, S is integrable iff
for each point zeM and all vector fields X and Y at z which
lie in S, the bracket [X, Y] also lies in S. {It is to be under-
stood here that X and Y are defined on an open neighborhood
of . Also, in saying that X, for example, lies in S we mean
that the image of each point z of M under X lies in .7, (M).
The bracket [X,Y ] is defined by [X, Y ](v) = X (Y (v))

— Y (X (v)), where v is any point in an open neighborhood of
.} In other words, a necessary and sufficient condition for
integrability of S is that its vector fields form a Lie algebra.

Definition** The tangent subbundle S gives rise to a
regular foliation of M if for any p,eM there is a submanifold
N (called a /eaf of the foliation corresponding to g,) whose
tangent bundle coincides with S.
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D. Flows; operations involving vector fields

We can formalize the idea of flow by direct extension of
finite-dimensional geometry. Thus, we say that a vector field
X has flow F, if dF,(p)/dt = X (F,(u)), YueM. If F,(u)is
defined V7R, we say X has a complete flow, and the vector
field itself is termed complete. The local existence and uni-
queness theorem for flows in the infinite-dimensional case of
interest to us can be found in Ref. 37.

For the infinite-dimensional geometry one needs to de-
fine Lie derivative and Lie bracket without reference to local
coordinates and their differentials. As in the finite-dimen-
sional case, this may be done in terms of flows.>**® For ex-
ample, the Lie derivative at time ¢ of a function f: & —»R',
with respect to the vector field X with flow F,, is specified by

£xf=lim{s — O SFE) - SIEB)]

where €& . The Lie derivative £, Y of a vector field ¥ with
respect to X may be defined similarly.*® With these defini-
tions one can show™ that if (as in Sec. IV) we work on an
analytic domain,*? the expressions £, f= X f and

£,Y = [X,Y ], familiar from finite-dimensional theory, will
apply. For nested commutators, it will be convenient to use
the notation ad} ¥ = [X,ad{" 'Y ],j>1, withad} Y =Y.

E. Densely defined vector fields

To this point we have implicitly or explicitly assumed
that various quantities such as vector fields, flows, curves,
etc., are well-defined on some open subset of the Banach
space. It is useful to consider extensions of these quantities
which are “densely defined.”?’

Definition: A manifold domain DCM is a dense subset
D in a manifold M, such that (a) D is also a manifold and (b}
the inclusion map i: D—M is smooth and Ti has dense range.

Definition”’: A densely defined vector field is a cross-
section map X: D—T(M) such that X (ple.7 (M)VpeD. A
Sflow (alternatively termed an integral curve) for X then con-
sists of a collection of maps F,: D—D, t€R, with the proper-
ties (a) F, . ((p) = F,oF{ p) and Fy( p) = p, YpeD, and (b)
dF,(p)/dt = X(F,(p)), YpeD, the derivative being evaluat-
ed considering F,( p) as a curve in M. Ifin the latter specifica-
tion ¢eR is replaced by >0, we speak of a semiflow (or a
semiintegral curve).

It is easily seen that all the definitions, properties, and
theorems quoted in this section, although designed for an
infinite-dimensional state space, are also applicable if the
dimensionality is finite.

1Il. CONTROLLABILITY IN FINITE-DIMENSIONAL
SPACES

The purpose of this section is to present the relevant
existing results on finite-dimensional control systems, in a
form which allows their ready extension to the quantum
control problem on an analytic domain.

A. Problem formulation and basic definitions

Consider a control system whose state vector m evolves
on a real analytic manifold M according to the dynamical
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law

L inie) = Xdrmit) + 3 wfe i) 3

/=1

Here X,,X,,...,X, are (possibly nonlinear!) vector fields on M,
which resides in a finite-dimensional space. The admissible
class of control functions u,(t) (the set {u,(¢),...,4,(¢)} being
abbreviated as u) is again chosen to be the class of piecewise-
constant functions from [0, o ) into R. For emphasis we have
changed notation relative to formulation (1}, which refers to
the more general situation where the state space may be infi-
nite-dimensional.

Let 77(M) be the set of all real, analytic vector fields on
M. By the Frobenius theorem of Sec. IIC, 7" (M) in fact con-
stitutes a Lie algebra over the reals. Supposing & is a subset
of 7" (M)and .¥ | and .¥", are Lie subalgebras of 7 (M}, it will
be useful to introduce the following sets:

G(m)={Y (m)|Ye&],

[&} . =.7(&)=Lie algebra generated by ©
(smallest Lie subalgebra of 77(M) containing &),

.27, 20={{X,Y]|Xe&,, Ye¥,}.

Assume that the solutions of the differential equation
(3) are defined for all #>0, and denote an individual solution
by m(m,,u,t), where m, is the initial state vector and
u = {u,;}. An important definition follows.

Definition: Given m,,,m &M, we say that m, is reachable
from m, at time ¢ if there exists an admissible control ¥ such
that m, = m(m,,u,t ). The reachable set from n at time ¢, 1.e.,
the set of points in M reachable at 7, is symbolized by R, (n). In
addition, we introduce the reachable set from » in positive
time: R(n)=u,_, R, (n).

The task at hand is to characterize these reachable sets,
which, of course, determine the extent to which the system is
controllable. It is by now well known'®!"1¢-'% that the struc-
tures of R, (n) and R(n) are intimately related to the Lie alge-
bras

=X, X ,.X. } 4,
% {XI’X2"”’Xr}LA s
£ {ad{n X |l=1..,nj=01,0.-

Hl

Il

|||

The essential relations will be traced in the next subsection.
We note that &/, %, and % are not necessarily finite-dimen-
sional.

It is appropriate at this juncture to identify the primary
sources of the essential ideas and results of geometric control
theory in the finite-dimensional case. The work of Chow?
stands as an obvious pinnacle of the field. In the pre-Chow
era, we may point to studies of Caratheodory***’ and Ra-
don.*' (References 40 and 41 contain material on the calcu-
lus of variations which bears implicitly on controllability.)
Subsequent to Chow, the primary literature includes the
work of Hermann,**> Sussmann and Jurdjevic,'®"!
Krener,'* and Stefan.* Among the other articles on finite-
dimensional geometric control theory cited above, we have
found Refs. 16 and 19 particularly useful in formulating our
outline of the subject, which follows.
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B. Basic results on controllability (finite-dimensional
state space)

The analysis of control system (3) rests on four funda-
mental theorems: the theorem of Frobenius (cf. Sec. IIC),
Chow’s theorem,® and two theorems due to Sussmann and
Jurdjevic.t"!

1. Frobenius’ theorem is, of course, fundamental to the
geometric analysis of the control system (3), as already indi-
cated above. To be given the control system normally means
to be given the X, , k =0,1,...,r, and the u,(t), [ = 1,...,r.
Hence the Lie algebra constructed from the X, and their
repeated commutators is available, and one can use the
theorem to circumscribe the analytic manifold on which the
system is destined to evolve—presuming such a manifold
exists. If the vector fields of & = {X,,X,,...X, } o are com-
plete, then the local existence property guaranteed by the
theorem as stated in Sec. IIC can be given a global extension
in the following sense'®: There will exist a maximal submani-
fold N of M containing the arbitrarily specified point m,eM
(or 12,€M in the more general context of Sec. II), such that
& (n) (respectively & {v)) spans the tangent space of N at each
point # (respectively v) of N.

2. To show how Chow’s theorem comes into the pic-
ture, we pursue a line of reasoning'® which begins with the
desire to quantify changes in the dynamics produced by
changes of the control #{t ). How can we represent the actual
effect of the control in terms of X, X ,...,X, and u(t }? We can
appeal to the Campbell-Baker-Hausdorff formula. Consid-
er X,Ye7 (M), and denote their flows by X,, Y,, respectively.
Then

X!,oer(m):Zt(mHt:l ’ (4)
where
Z=t X+ LY+ LY ]+ - (5)

is a formal series which converges for ¢, and 7, both in some
neighborhood of 0.

In terms of the Campbell-Baker—Hausdorff formula
(4)-(5), we may readily appreciate the role played by the Lie
algebra of { X, X ,....X,} in the controllability problem. Let
us temporarily focus on the modified control system gov-
erned by the dynamical equation

r

L) = 3wy (t)Kilmie)), 3

dt k=0
where all the u, are piecewise-constant real functions of
time. {Note the presence of the extra control factor u(z).]
Again the Campbell-Baker-Hausdorff formula may be used
to trace the dynamics, and we infer that if
Xe{Xo,X,,...X, | A then X,(m,) (also denoted simply X, m, )
belongs to the reachable set of the (modified) system.

On the other hand, we can enlist the following argu-
ment'® to circumscribe the set of reachable points of system
(6). Assume that the vector fields of #"(M) are complete, and
consider an arbitrary member X of this set. Then, for eachza
mapping X, of M onto itself is provided by the flow on M
corresponding to the differential equation dm/dt = X (m).
Consider the group diffiM) of diffeomorphisms of M, i.e., the
set of all C ~ one-to-one and onto mappings of this C * mani-
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fold onto itself, such that the inverse mappings are likewise
C . Let the smallest subgroup of difffM) which contains X,
for all X in {X, |k = 0,1,...,} be symbolized by {{X, },}s.
Now, we can easily see that any point in M expressible as
Wm,, where We{{X, ], )5, can be reached from m, along
solution curves of (6). The indicated points are all like

(X/'o)’o(X/'l )’1 "'(/Y/[’),'mo ?

where {44, 41,..., 4, } = {0,1,...,r]; such points can certainly
be attained by suitable switchings of the controls. One just
setsu, =landtheu, . =0foratimeintervalz,, etc., final-
ly setting u, =1 and the u, ,, =0 for period z,.

The obvious question is: How is the set of points
M,={Wm,|We({X.]},}s ] related to the set
My={Lm,|Le{{L,;},}g ] where {L,] = {X,} A = & . We
know that M, is reachable, while M, promises to be a larger
set. Itis here that Chow’s theorem may be brought to bear; in
effect, it says that the sets M, and M, are identical (under
some modest conditions). We state the theorem in the ver-
sion given by Brockett.'®

Theorem 3.1 (Chow): Suppose that
{ Xo(m), X (m),....X, (m}} is an assembly of vector fields such
that the elements of the Lie algebra
& (m) = {Xym), X \(m),....X,(m)} . are(a) C*ona C*
manifold M with dim ./ (m) constant on M or (b) analytic on
an analytic manifold M. Then, in either case, given any point
m, €M, there exists a maximal submanifold M’ C M contain-
ing m, such that M, = M, = M’ (N.B.: the arguments m are
included in this statement to allow for the case that
XX 5., X, are nonlinear.)

We are thus able to draw some strong conclusions re-
garding the controllability of system (6) and the nature of its
reachable set. But what about the system of immediate con-
cern to us, namely (3)? Chow’s theorem is not so incisive for
this problem because it treats positive and negative times on
an equal basis. The maximal submanifold M’ may contain
points which can only be reached by moving backwards
along the vector field X,(z). But in (3) there is no control
factor u,(t ) that we can set equal to — 1, and such points are
not actually reachable. Thus, in general, the reachable set
R(m,) for system (3) will be only a proper subset of the mani-
fold M’ = M, characterized by the Lie algebra
o = { XXX, LA

3. Against the background of Chow’s theorem, some
limited progress toward the characterization of the reacha-
bleset R,(m, ) for system (3) has been made by Sussmann and
Jurdjevic.'®!! To present their results, we formally intro-
duce the maximal integral manifold \( % ;m) of % passing
through meM, where %" is an arbitrary subalgebra of 7 (M).
Explicitly, we mean by this that [(#",m) is the largest con-
nected submanifold N of M which contains m and has the
property that for all neN, the tangent space to N at nis # (n).
The existence of I{ #",m) follows from the global version of
Frobenius’ theorem. We also introduce, for £ >0, |,( % ,m)
=|(%#",X,,{m)). The relevant theorems are then:

Theorem 3.2 (Sussmann and Jurdjevic'®): Let X, and Y,
denote, respectively, the one-parameter flows of the vector
fields X, Ye.oz. Then for all meM and R, X, ({<€,m))

= Y,({(€ ,m)). In particular, X, (I(% ,m)) is the unique maxi-
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mal integral manifold of & through Xy, (m). (N.B.: the defini-
tions of Lie algebras &7, #, € given in Sec. ITIA.)

Theorem 3.3 (Sussmann and Jurdjevic'®'"): For all
meM and ¢ > 0, the reachable set R, (m) of system (3) is a
subset of |,(€ ,m); moreover, with respect to the topology of
|,(€ ,m), the set R,(m) is contained in the closure of its own
interior.

The latter theorem tells us that R, (m) has a nonempty
interior in |,(% ,m). This result ensues from the decomposi-
tion @ 3¢ DF of «.

4. We are now equipped with the basic tools needed to
pursue the controllability problem for system (3).

Definition: System (3} is said to be strongly completely
controllable if R,(m) = M holds for all #> 0 and all meM. If
R(m) = M holds for all m, the system is called completely
controllable.

Following Kunita,'® the key controllability results for
our system will be framed in terms of families of vector fields
drawn from 27(M). In so doing, we make use of the following
classification of vector fields, or more directly their associat-
ed integral curves.

Definition: With meM, the integral curve [ X, (m), seR}
is attainable [by system (3}] if both X, () and X _ ,(m) belong
to ¢¢R,(m) for any ¢ > O up to the closure time. If X, (m), but
not necessarily X _,(m), belongs to <R, (m), we speak of
semiattainability. On the other hand, if the more stringent
condition is met that the full curve {X,(m), scR} belongs to
<R, (m), again for any ¢ > 0, we say that { X (m), seR] is
strongly attainable. Strong semiattainability of { X (m), seR}
applies when the half curve { X,(m), scR * } belongs to
R, (m), ¥t > 0. The set of all vector fields on M whose inte-
gral curves are attainable (respectively, strongly attainable)
is denoted by ¥ (respectively, U). The notation A (respec-
tively, 2" ) is used for the corresponding semiattainable (re-
spectively, strong semiattainable) case.

The above nomenclature is rooted in the nature of con-
trol systems, being manifestly predicated on the structure of
the state-evolution equation, and in particular on what con-
straints are imposed on the control factors attached to
Xo:X1,-...X, . For example, set the u,;, / = 1,...,r, identically
zero and consider the autonomous system d.X, /dt = X,(X,).
It is seen that X, belongs to 2™ but not to ¥, since only one
direction, and no control of amplitude, is associated with
this vector field (i.e., u,==1). Now consider instead the sys-
tem (3) with X,==0, thus the evolution equation dm(t)/dt

= 27_, u,X,{m(t)), and suppose the controls are restricted
by |u,| = 1 or 0. In this case we see that the vector fields
Xys....X, belong to 2 because their effect on the dynamical
state can be directed by u,,...,u,; however, X,,....X,¢% be-
cause the amplitudes with which these vector fields enter the
dynamical law cannot be manipulated with sufficient flexi-
bility. On the other hand, when ro constraints are imposed
onthe u,, /= 1,...,r (apart from piecewise constancy), it is
clear that # = .¥(X,,....X,)C%s. For then X,,...,.X, can al-
ways be “scaled™ by appropriate controls (¢ ),...,u,(¢ ) in
such a way that m(t) reaches, at any chosen time t;, any
selected point on the manifold characterized, through the
global version of Frobenius’ theorem, by .

Besides the concept of attainable, semi-attainable, etc.
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sets, it is convenient to introduce the following notation. Let
B be a subset of 7 (M) and X an element of 77(M). For a given
positive integer g, consider the set of vector fields

ad,.--ad?, X such thati, + - + i, = g, where
XD,...X” are mutually commuting, complete vector fields
belonging to 8. Denote the collection of all vector fields
constructed in this manner, allowing for all qualifying
choices of {X V,....X P} in B, where p is to be varied also, by
ady X. The subset of ad{y X such that at least one of the
indices iy,...,i, is odd, will be designated odd ady§' X. [The
basic reason we are interested in odd ad{’ X is that it belongs
to A, provided Xe* and X 'V,.. X Pl (Ref. 19).]

Two important theorems on the controllability of sys-
tem (3) may now be established. Proofs are given in Refs. 19
and 43. It is assumed that dimM =d < .

Theorem 3.4 (Kunita'®): (i) If dim ¢ (m) = d holds for
all meM, then system (3} is strongly completely controllable.
(N.B.: A is a Lie algebra.)

(ii) If dim .Z(A)(m) = d holds for all meM, then system
(3] is completely controllable.

Theorem 3.5 (Kunita'®): Assume that for control system
(3) one can find a sequence of sets &, of vector fields,
j=0,1,2,..., with ordering B,C 8, C B, C ..., which meet the
following two criteria:

1) B, CH = .LX,,...X,);

(i1) for each value of the index j there exists a positive
integer ¢, such that ady * " X,C .#(%,) and B, | C.£(8;,
odd adfﬁ’/i X,). It follows that .2 (U, B,)C Y. If in fact
dim .Z°(U2 ; B,) (m) = d holds for all meM, system (3) is
strongly completely controllable on M.

Corollary 3.5.1 (Kunita'%): If dim ¢ (m) = d holds for
all meM and [¥€ , #]C A, system (3) is strongly completely
controllable.

These last two theorems summarize the main results
from finite-dimensional control theory which we would like
to extend to quantum dynamics. However, such exten-
sions—to the extent that they are possible—necessitate care-
ful attention to the domain problem arising from the infinite
dimensionality of the quantum state space.

IV. CONTROLLABILITY OF QUANTUM-MECHANICAL
SYSTEMS

Let us return now to the quantum-mechanical control
problem formulated in Sec. I. Since in this case H,,H,,...,.H,
of (1) must be linear, skew-Hermitian operators on a Hilbert
space #”and the u,(t ) are piecewise-constant by assumption,
there will be associated, with the quantum dynamics, a Lie
group I" whose elements may be represented by unitary op-
erators on &%”. The usual statistical interpretation of the state
vector (wave function) ¢(¢) is reflected in its unitary evolu-
tion. The scalar product of vectors ¢,, ¢, in the Hilbert space
# isdenoted (¢, |¢,). Imposing unit norm at the initial time
t =0, we have (¢{t)|¥(r)) = 1 V¢ i.e,, the dynamics unfold
on the unit sphere of 77, denoted S, .

A geometric description of quantum dynamics parallel-
ing the description of Sec. III is facilitated by treating the
state space /#” of the quantum system as a rea/ Hilbert space.
To this end, we may assert the formal decomposition
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H = F R x#', where #® and ¥ are real Hilbert
spaces, isomorphic to one another. This decomposition is
given meaning as follows. Consider an arbitrary state vector
¢, interpreted to begin with as a vector in complex Hilbert
space. We may choose some representation and identify real
and imaginary parts, ¢ = ¢ * + i¢'. Then ¢ * is assigned to
the space 7, i.e., ¢ e, while ¢ ! is assigned to .
Thus ¢ is reinterpreted as a vector in a real Hilbert space
constructed as the Cartesian product of #* and #”. Corre-
spondingly, we agree to compute the scalar product (¢, |d,)
as

($1162) =783 + (81.63),

where (¢ {,¢ §) (respectively, (¢ |,6!))is the usual scalar
product in the real Hilbert space 5#® (respectively, 7).
Since, in this work, we shall never have occasion to ascribe
physical significance to the scalar product of two different
vectors, these conventions will not bring us into conflict with
those ordinarily adopted in quantum theory.** (For norms of
state vectors, the two views obviously coincide.)

The above formal reinterpretation of 5%°, while entail-
ing no loss of generality within the context of our aims, al-
lows us to endow certain subsets of % with manifold struc-
ture. In particular, S, is an infinite-dimensional
submanifold of &7°. For an explicit verification of the mani-
fold character of S, , see Lang,* pp. 28-29. To see the geo-
metric structure of S ., choose the local chart around
X:€S, as the projection of a neighborhood U, (y;) to the
space &, ={ 7| (.n|y.) = 0, 7e%°}. The latter is manifestly
a closed infinite-dimensional subspace of #”; moreover, #°,
is isomorphic to 57, for all y,, y,€S, .

A prominent feature of the quantum problem is that
Hy,H,,...H, are generally unbounded operators; it then be-
comes important to bring into play the notions of densely
defined vector fields, and associated flows, curves, etc., in-
troduced in Sec. II.

In this section, it is our primary task to show how re-
sults on controllability of finite-dimensional control sys-
tems, surveyed in Sec. II1, can be generalized to infinite-
dimensional, quantum-mechanical systems by exploitation
of the properties of a certain type of manifold domain—an
analytic domain & . The existence of such a domain is as-
sured by Nelson’s theorem,*? for a restricted but nontrivial
class of skew-Hermitian operators Hy,H ,...,H,. The condi-
tions entering this theorem will appear rather restrictive,
since they imply in particular that the Lie algebra
o = L (Hy,H,,...H,) associated with the quantum control
system (1)-(2) is contained in the Lie algebra of operators on
Z obtained from the unitary representation of I". Still, the
case of greatest relevance to engineering applications is in-
cluded, namely, the harmonic oscillator with couplings to
external classical fields. Moreover, an alternative formula-
tion may be considered in which Nelson’s theorem is not
invoked: If one simply assumes the existence of an analytic
domain &, the extensions go through provided only that
one imposes the additional assumption that the tangent
space defined by .«/({ ) has constant finite dimension for all
;€S , nZ . Within such a formulation the possibility re-
mains open (at this point) that the Lie algebra ./ produced
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by H,H,,...,H, is larger than that derived from the group I,
conceivably infinite-dimensional.

In either formulation, the problem of practical interest
will of necessity be one of controllability on a finite-dimen-
sional submanifold of the infinite-dimensional manifold S »
available to the normalized quantum state. This limitation of
our treatment will be explained in Sec. IVC; in brief, control-
lability on S, would entail infinite sequences of switchings
of the u,(t).

A. Analytic vector and analytic domain

The reader should consult the original work of Nelson??
for the underlying motivation and detailed development of
the concepts of analytic vector and analytic domain (see also
Ref. 33). In the interests of logical completeness, we should,
nevertheless, recall the definition of analytic vector.

Definition: Let A be an operator in #°. An element w of
¢ is called an analytic vector for A if the series expansion of
(exp s4 Jow has a positive radius of convergence, that is, if

o h
$ el

n=20 n!
for some real s > 0, where |4 "w|| is the Hilbert-space norm
of 4"w.

Note that if 4 is bounded, all vectors of ¥ are trivially
analytic vectors for 4; i.e., the concept of analytic vector
becomes an incisive one only when dealing with unbounded
operators—which, of course, are prevalent in quantum me-
chanics.

We should also state what it means to be an analytic
vector for a Lie algebra.

Definition: A vector w qualifies as an analytic vector for
a Lie algebra . if for some s > 0 and some basis of the Lie
algebra, say {H,,,....H 4, ], the series

LS Ep-Hels
n=0 M 1< < <iged

Ny 4ok Ry =n
converges.

The theorem of Nelson which is relevant to the present
investigation is:

Theorem 4.1 (Nelson*?): Let .%” be a Lie algebra of
skew-Hermitian operators in a Hilbert space 5, the opera-
tor basis {H,y,,....H 4, }, d < 0, of .2 having a common in-
variant dense domain. If the operator T=H},, + - + H{,,
is essentially self-adjoint, then there exists a unitary group I
on 5 with Lie algebra .. Let 7 denote the unique self-
adjoint extension of T. Then it furthermore follows that the
analytic vectors of 7" (i) are analytic vectors for the whole Lie
algebra .# and (ii) form a set invariant under I" and dense in
e

The vital implication of this theorem for our work is
that it establishes the existence, under definite conditions, of
a dense domain & , of analytic vectors which provides a
foothold for the extension of the controllability results of
Sec. I1I to the quantum problem (1)—(2). Indeed, the set of
analytic vectors of 7 will constitute such a subspace &, of
#°. Making the obvious identification .¥ = .o/, the ele-
ments of ./ are then seen to be densely defined vector fields
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on & ,nM, where M is a finite-dimensional manifold on
which the system point evolves with time. (Such a manifold
surely exists under the prevailing assumptions; we could, for
example, choose it to be the manifold characterized by

o = {HyH,,...,H,} . through Frobenius’ theorem.) We
also have the corresponding “densely defined” flows (cf. Sec.
IIE}.

! The detailed reasoning runs as follows. Under the
provisions of Nelson’s theorem and by the nature of analytic
vectors, we know that any element of the unitary group I
associated with { Hy,H,,...,H, } can be represented locally in
the exponential form exp X?, where X is some element of ..
Moreover, this exponential expression can be extended glo-
ballyin ¢ (see Refs. 32 and 33); in other words, if the elements
of & are vector fields, they are in fact complete. That the
elements of &7 do qualify as vector fields can be seen in terms
of the definition given in Sec. IIB. First, ¥ = (exp Xt )¢, is a
parametrized curve on manifold M with ¥(0) = ¢, eM.
Henced (poy)/dt |, _ , represents a tangent vector; choosing
for @ the identity mapping, Xy, represents a tangent vector
at ¢, on M. If, in particular, dim &/({ ) = dim(MnZ )

=d < w, VeMnZ , then it is sufficient to use «/ to char-
acterize the tangent space 7 (M) to M at §, and the tangent
bundle T(M) = Uyemazs, 7 ¢ (M). Referring now to the defini-
tion of vector field (and the definition of densely defined vec-
tor field, Sec. IIE), the elements X of ./ assuredly qualify as
(densely defined) vector fields, since we may associate with
each a mapping X: MnZ ,—T(M), with X ({}) = (£,X5 ),
£eMng . In fact, each X is an analytic vector field on
MnZ , since @ is taken as the identity.

B. Analytic controllability

With an analytic domain at our disposal, it is advanta-
geous to modify the notion of controllability, as follows.

Definition: Assuming that an analytic domain exists,
system (1)—(2) is called strongly analytically controllable on
MCS,, ifR,(§) = MnZ , holds for all > 0 and all
LeMnZ . IfR({ ) = Mn& , holds for all {eMnY , the sys-
tem is termed analytically controllable on M.

Within the formulation set up in Sec. IVA, in which we
appeal to Nelson’s theorem, we can choose M as the closure
of the set {e™e"™...e” "y | 5, €R, k = 0,1,...,r}; this is cer-
tainly the maximal manifold on which the system will evolve
from ¢,eMn¥ . From previous considerations we know
that M is necessarily a finite-dimensional submanifold of
S, , that Hy,H,,....F, are densely defined vector fields on
MngZ ,, which is, of course, dense in M, and that the tangent
space of MnZ , at { is characterized by & (£ ), VieMnZ . If
&/ (y ) is of dimension 4, for all yeS ,.nY , weseethat S,
has been partitioned into a foliation with d-dimensional re-
gular manifolds as leaves.

We are now ready to pursue the question of analytic
controllability on M, in analogy with the treatment of Sec.
III. On MnZ7 ,, the flows of vector fields of . take exponen-
tial form, by virtue of the properties of an analytic domain.
Hence a Taylor expansion is always well defined for any such
flow. Consequently, the Campbell-Baker—-Hausdorff for-
mula applies, making available computational techniques
which parallel those employed for the finite-dimensional
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state space. (The only distinction is that the norm is now
calculated in Hilbert space.) At the same time, the Frobenius
theorem stated in Sec. IIC is also valid with respect to & _,,
i.e., with M replaced by MnZ . What about Chow’s
theorem? In the general infinite-dimensional case, the valid-
ity of this theorem is questionable. To see that it may be
carried over to the present context, consider that the proof of
the theorem (see, for example, Refs. 10 and 11) is based on (i)
a paracompact topology for the manifold in question (here,
MnZ ), (ii) finite dimensionality of the tangent space of that
manifold, and (iii) the Campbell-Baker—Hausdorff formula.
We have already seen that it is legitimate to invoke (i1}, while
it is well known that the submanifolds of a normed topologi-
cal space (like #°) are always paracompact with respect to
the relative topology. The crucial prerequisite is then (ii); but
this property is intrinsic to our formulation based on Nel-
son’s theorem. Thus, Chow’s theorem does indeed hold
within our restricted treatment of the quantum control prob-
lem. To be more specific, case (b) of the theorem as stated in
Sec. 11IB applies, with MnZ ,, {H,H,,...H }, ¥, and ¥,
playing the roles of M, { X, X,,...,X, }, m, and m,, respective-
ly.

Having these basic tools at our command it is routine to
generalize the remaining results for the finite-dimensional
control problem (3) to the guantum case, while exercising
due care with regard to domains, norms, and limits. The
details of this process, available in Ref. 43, are too lengthy to
reproduce here. The upshot is that so far as Theorems 3.2
and 3.3 (Sussmann and Jurdjevic) are concerned, m goes over
to ¢y and M to MnZ , and, of course, X, is replaced by H,,
k =0,1,....,r, in forming the Lie algebras .« and % . (N.B.:
7"(M) is reinterpreted as the set of all real, analytic vector
fields on Mn& ,.) The important results of Kunita are also
readily adapted to the quantum problem, by making the
same replacements. Because of its role in the examples to be
presented in Sec. V, we recast Corollary 3.5.1 explicitly in
these terms.

Corollary 3.5.1": Let ¢ = {ad), H |l = 1,...,r;

j=0,1,} . betheidealin & = {Hy,H,....H } . generat-
ed by H,,....H,. Suppose that dim Z{{) =d < w0,
VieMnZ ,, and that [€,2]C % . The quantum control
system is then strongly analytically controllable on M.

The “practical” implication of this corollary is that (as-
suming the requisite conditions are met) we can always con-
trol the system so the state 3, starting at any point
¥, eMn& ,, arrives arbitrarily close to any desired pointin M
after any chosen time interval ¢. Consequently, the expecta-
tion value of any observable quantity can be made to ap-
proach arbitrarily closely the expectation value of that quan-
tity in any prescribed state vector in MC 7, at any 1> 0.

C. Controllabilityon S,

Since Nelson’s theorem requires that { Hy,H,,....H, |
gives rise to a finite-dimensional Lie algebra, it is apparently
not possible to control the system on the unit sphere S .- (i.e.,
with M = S . in the definition of analytic controllability} if
that theorem is in force. This is indeed the situation, the
manifold M which enters the results of Sec. IVB being neces-
sarily finite-dimensional. A more concise formal statement
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is given below.

Theorem 4.2: If { H,H ,,....H, } generates a d-dimen-
sional Lie algebra .« which admits an analytic domain & ,
the quantum system is not analytically controllableon S ,, if
d is finite.

Proof: By the properties of an analytic domain, there
exists a connected, d-dimensional Lie group I" with Lie alge-
bra &7, the elements of I being constructed as G = exp X
from members X of .«#. Moreover, I" can be chosen to act on
S, N, accordingto G (£ ) = (exp X ), £€S , nZ,,. Let. T
be an e-dimensional tangent subspace of S, at £, and let P
H"—7 be the corresponding orthogonal projection from
#°. Then P (G¢ ) defines a map from the d-dimensional Lie
group I' into the e-dimensional tangent subspace 7. This
map cannot be onto if e > d. Further, since H, does not enter
with an adjustable control factor u(t ), the dynamical semi-
group I', of the quantum system (1)—(2} is contained in the
group I". Accordingly, if (as has been shown) I is not suffi-
ciently rich to steer the state trajectory into all directions of
7, neither is I',, and we conclude that the system is not
analytically controllable on S ;...

Corollary 4.2.1: If the quantum system is analytically
controllable on S -, then &/ must be infinite-dimensional.

Proof: Direct observation.

Remark: In the case that & (£ ) is infinite-dimensional
for all £€5,-nY ,, an arbitrary flow of I would have the
form G(£) = [II, exps; X' &, X Ved, 5;€R, { /] infinite.
In other words, if /(£ ) is infinite-dimensional, an infinite
sequence of switchings would, in general, be required to
build an element of I",. Thus, within the context of
piecewise-constant controls, practical realization of com-
plete control of the quantum system (in the sense of analytic
or strong analytic controllability on S ;) is out of the ques-
tion. Accordingly, our efforts have focused on the issue of
controllability on finite-dimensional submanifolds of S, .

V.EXAMPLES

Example 1: In the context of a position or x representa-
tion** for state vectors and operators of %, xeR', define
1 (d 1 d* x*
K :+“-‘(___x), K=*~—+—_’
R AR T T2
(7
together with £ = identity operator. The operators — iK,
K, —K_,andi(K, + K_)areskew-Hermitian, and the Lie
bracket among them is specified through*®

(KK, ]=+K,, [K..K ]=—E. (8)

Making the identifications Hy = —iK;, H, =K — K _,
and H, = i{K, + K_), we consider the system

g;wtt): (= iKy + () [K, —K_]

+uy(e) [iK, + K )3t} 0 =4,. (9)

[For notational convenience we suppress, in (9), the fact that
¥(t) = ¥{x;t ) depends on the variable x, and that the deriva-
tives entering should actually be partial derivatives.] The Lie
algebra .2 ( — iK,,K, — K_,i(K, + K _)) = « has basis
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—iKy, K, —K_,i{K, +K_),iE over R', and it is well
known’** that there is a common dense invariant domain—
an analytic domain & ,—for these operators, spanned by
analytic functions ¢, (x). Explicitly,

¢, lx) =7~ M)A — 127 expl — x7/21h,(x),
n=0,1.2,..,00, (10)

where the /4, (x) are Hermite polynomials. As basis of the Lie
algebra (K, — K_,i{K, + K_)) = % one has simply
K, — K_,iK, + K_),iE. This basis is in fact shared by the
ideal ¢ in .« generated by H, = K, — K _ and

H, =i{K, + K_). Thusthe Liealgebras & and ¢ coincide,
and the property Xe¥, Ye€ =[X,Y ]eZ emerges trivially.
Furthermore, we verify from (7} and (10} [or (8)] that

dim .&/(w) = dim #(w) = dim € (w)=d = 3forallweZ ;
moreover, dim (% ,£) = 3 for all £€8 , N . The essential
relations are

K+¢n :(n + 1)1/2¢n+1 » K-¢n :nl/2¢n—-i s
K3¢n = (n +%)¢n ’ E¢n =¢n . (11)

[For the special case w = ¢,, we have K_w = 0. However,
even in that case we obtain in effect three linearly indepen-
dent vectors upon application of the basis operators — iK},
K, —K_,iK, + K_),iE, since our Lie algebras are de-
fined over the reals.]

By virtue of the properties just displayed, Corollary
3.5.1' (stated in Sec. IVB) comes into play, and we may con-
clude that (i) the reachable set of ¢, in S , NG, is given by
€ ¥, ) =7 .¢,) for ,=¢(O)espan{g, (x),
n=0,12,..,0} and (ii) putting M = £1(% ¢, ), the system
is strongly analytically controllable on M.

At a more intuitive level, one can argue from (11) that
the dynamical effect of H, = K can be cancelled by that of
some input which dominates % ; this implies strong analytic
controllability, checking the implication of Corollary 3.5.1".

Physically, the state-evolution equation of (9), multi-
plied by 7, may be interpreted as the Schrodinger equation
governing the dynamics of a one-dimensional quantum os-
cillator coupled independently via its momentum and posi-
tion operators to external controls (fields) «,(t ) and u,(t ), re-
spectively. The operator K represents the energy of the
uncoupled oscillator, while K, and K _ serve, respectively,
as creation and destruction operators for harmonic excita-
tions.

Example 2: The commutation relations {8) bring to
mind the commutation relations for the spherical compo-
nents of the angular momentum operator J. Given the Car-
tesian components J,, J,, J, of J, we form the spherical
components J, =J, +iJ,,J; =J, and obtain®’

[, ]=+J,, [J.J_1=2E. (12)

Wenote that {12} coincides with (8) except for the presence of
a factor 2 on the right-hand side of the last relation, instead
of a factor — 1. Itis evident that one can go on to formulate
simple examples of the quantum controllability problem
based on the Liealgebra .2°( — i/, — iJ,, — iJ,) of the angu-
lar momentum operators.

In particular, one might set Hy = — iJ,, H, = — i/,
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and H, = — iJ,, and consider the system equation
Lvfe) = (=it ) =T

+ uy(t) iV + T )]1}e),

o) =19, , (13)
wherein we revert to our earlier interpretation of #{z) as an
element of the abstract state space. The resemblance
between problems (13} and (9) is strong; for instance, we find
the corresponding properties that ./ hasbasis — iJ,, — i/,

—1iJ,, —iE, and that % and ¥ share the basis — iJ,,
—4iJ,, —iE.On the other hand, an important distinction
must be recognized. In the present case there exists a Casimir
operator, i.e., a (non-trivial) function of base elements of the

Lie algebra . which commutes with all base elements,
whereas in Example 1 there is no such (nontrivial) operator.
Here the Casimir operator is, of course, the square of the
angular momentum, J> =J? + J?2 4 J2. Thus, if we sup-
pose that the state of the quantum system is initially in a
subspace of eigenvalue j{ j + 1) of J?, where >0 is integral or
half-odd integral, it will always remain in that subspace.
Having chosen a definite value of j, and having agreed that
J.sJ,,J, and functions of them are the only relevant obser-
vables [as is the case for the particular system (13) and nota-
bly for situations in which only spin degrees of freedom are
manifest], we have a problem involving a finite-dimensional
state space y;, of dimension 2/ + 1. Accordingly, the results
of Sec. IIIB 34 are directly applicable, and, taking account
of the skew-Hermitian nature of H, and the H,, it follows
that strong complete controllability prevails on the unit
sphere in y;. Numerous explicit physical examples of this
sort are encountered in the fields of atomic- and molecular-
beam experiments and magnetic resonance; for archetypal
cases, see Ref. 46.

Example 3: Consider the system

f%zﬁm: [P} + P} +uft)Py + uslt )P ] 1) ,

o) =1, , (14)
where P, and P,, in the x,x, representation, x x,€R? have
the modes of action — id/dx, and — id/dx,, respectively.
The common eigenfunctions of the commuting operators 2,,
P, donotliein L *(R?) and so do not qualify as representatives
of Hilbert-space state vectors; however, we know from the
theory of Fourier transforms that these common eigenfunc-
tions span L *(R?) in the sense of integral superpositions. In
terms of such Fourier-integral superpositions, one may in
fact define a common, dense, invariant domain of L *(R?) for
the unbounded operators H, = — i{P? + P%),H, = —iP,,
and H, = — [P,  Moreover, the solution of the Schrédinger
dynamical problem (14), with initial value ¢, in the latter
domain, can be expressed in exponential form. The forego-
ing heuristic sketch indicates that it is possible to construct a
suitable analytic domain & , for the control problem speci-
fied by (14). A rigorous construction can be formulated in
terms of Nelson’s theorem as stated in Sec. [V, with
T=(P} + P>+ P24+ P2,

Now let ¢, , be a common eigenvector of P, and P,
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with respective eigenvalues k, and k,, or, more properly, a
wave packet or eigendifferential** constructed as an integral
superposition of eigenvectors of these operators with respec-
tive eigenvalues lying in arbitrarily narrow intervals cen-
tered on k|, k,. We are faced in this example with a degener-
ate situation in which H,, H, and H, all commute with one
another. Thus, [%,% ] collapses to the null set. Consequent-
ly, the chosen state ¢/, , belongs to the reachable set R(¢, )
only if ¢, = (0}, 4, |c(0))* = 1; under this condition the
system always stays on the one-dimensional manifold de-
fined by c(z )¢, with |¢(¢)|* = 1. The controls u,(¢) and u,(t)
can at most change the phase of the state and hence are
ineffectual, since all physical predictions are independent of
this phase.

One may of course interpret the Schrodinger equation
of (14) as that for two equal-mass particles moving in one
dimension. The particles do not interact with one another,
but are coupled independently via their respective momenta
to controls (fields) u,(#) and u,(z).

VI. SUMMARY AND OUTLOOK

It has been our aim to lay a foundation for the concept
of controllability of quantum-mechanical systems. Refer-
ring to expressions (1) and (2), a quantum control system is
characterized by its internal Hamiltonian H | = i#iH,,
which is the infinitesimal generator of the free evolution of
the quantum object, together with the operators H |

= ifH,,... . H = ifiH,, which couple that object to external
controls of respective amplitudes u,(¢),...,u, (t ). Working
within traditional quantum theory, where the 7,

(k = 0,1,...,7) are linear, skew-Hermitian operators, we have
succeeded in deriving conditions for global controllability on
a certain finite-dimensional submanifold of the physical Hil-
bert space 7. The cornerstone of the associated analysis is
an analytic domain & ,, which we presume to exist for the
given operators. The results we have obtained are natural
extensions of well-known systems-theoretic results in finite-
dimensional state space (drawn especially from Refs. 10, 11,
14, 16, 17, and 19). Generalizations to nonlinear versions of
the quantum control problem (corresponding to nonlinear
extensions of quantum theory) have not been considered
here, but some results on local controllability in the context
of nonlinear operators H, have been derived in Ref. 43. The
present work on the quantum controllability problem has
provided a background for investigation of the invertibility
of quantum-mechanical systems*” and the formulation of a
quantum nondemolition filter,*$4°

Still, only a modest beginning has been made toward
achieving the larger goal of a comprehensive theory of quan-
tum control and filtering. The following problems, among
others, await concerted effort:

(i) Generalization of the present treatment of quantum
controllability to a less restrictive scene of action than a do-
main of analytic vectors—for example, a domain composed
of vectors of 7 for which the orbits are infinitely differentia-

ble functions of the group parameters.

(ii) Investigation of controllability for the case of control
functions u,(t ) belonging to L *(R).
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(iii) Study of a controlled version of the Schrodinger
equation for the time evolution of the density operator,* so
as to extend control theory to the realm of quantum statisti-
cal mechanics.

{iv) Adaptation of the notions of observability, identifi-
cation, realization, and feedback to the quantum setting.

It is evident that powerful mathematical techniques
must be invoked to carry through this program; moreover,
one must confront the profound conceptual obstacles intrin-
sic to the quantum measurement process.’*—>2
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Convergence of the 7-matrix approach in scattering theory. Il
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Convergence of the T-matrix scheme is proved under more general assumptions than in Ramm [J.
Math. Phys. 23, 1123-5{1982)] and for more general boundary conditions. Stability of the
numerical scheme towards small perturbations of data and convergence of the expansion
coefficients are established. Dependence of the rate of convergence on the choice of basis
functions is discussed. Dependence of the quality of expansions in various spherical waves on the

shape of the obstacle is discussed.

PACS numbers: 03.80. + r, 11.20. — ¢, 02.30.Jr, 02.30.Mv

1. INTRODUCTION

1. Let & be a bounded obstacle with the boundary I
Consider the following problem:

(V24 k% u=0, in 2 k>0, (1)

ulr =1 (2)

r(—a—u— —t'ku)—»O, F— oo, (3)
ar

where £2 is the exterior domain and f'is given. Later we dis-
cuss other boundary conditions than (2}, but the basic argu-
ments and conclusions will be similar to those for problem
(1-3).

The corresponding scattering problem is as follows:
find the solution to Eq. (1) satisfying boundary condition (2)
with /= 0 and of the form v = u, + v, where v satisfies the
radiation condition (3) and u, is the incident field. It is clear
that this problem reduces to problem (1}-(3) for v with

f= —uyon I'. Therefore, we discuss in what follows prob-
lem (1)—(3). There is an extensive literature about this prob-
lem. The existence and uniqueness of the solution to this
problem for Liapunov boundaries are established long ago
and are available in textbooks now.! The case of nonsmooth
boundaries was also treated.” Numerical methods for solv-
ing problem (1)—(3) are known (finite differences, see e.g.,
Ref. 3, numerical solution of the boundary integral equa-
tions of the second and first kind*).

Our concern is with the T-matrix scheme.’ This nu-
merical scheme was widely used during the last decade in the
problems of acoustic, electromagnetic, and elastic wave scat-
tering by one and many bodies, for scattering from periodic

structures etc.” !¢

Nevertheless, the basic questions concerning conver-
gence of the scheme, stability of the numerical scheme
towards small perturbations of the data remained open. In
Ref. 11 these questions were answered for the first time.
Here the results from Ref. 11 are strength